• A
  • A
  • A
  • ABC
  • ABC
  • ABC
  • А
  • А
  • А
  • А
  • А
Regular version of the site

Scientists at HSE University Devise More Accurate Method for Predicting the Electrical Conductivity of Electrolyte Solutions

Scientists at HSE University Devise More Accurate Method for Predicting the Electrical Conductivity of Electrolyte Solutions

© iStock

Researchers at HSE MIEM have developed a model for calculating the electrical conductivity of aqueous electrolyte solutions; for the first time, it considers the spatial distribution of ion charges instead of assuming their localisation at a single point. The model remains effective even at high electrolyte concentrations and across a wide temperature range. This breakthrough will contribute to the development of more efficient batteries and enable the calculation of electrical conductivity without the need for experimental testing. The study has been published in the Journal of Chemical Physics.

Electrolytes are substances that dissolve in water to produce charged particles known as ions. When exposed to an electric field, ions in a solution can move and generate an electric current. Thanks to this property, ions play a crucial role in nerve and muscle function, maintaining water balance, storing and releasing energy in batteries, and purifying water in desalination systems. 

The electrical conductivity of an electrolyte solution measures its ability to conduct an electric current. Classical theories for calculating electrical conductivity are effective at low concentrations, but as concentration increases, effects arise that these theories do not account for, resulting in discrepancies with experimental data. As a result, obtaining accurate information in systems with limited data on electrical conductivity or where measurements are challenging becomes difficult.

Scientists at HSE University have developed a new model that calculates the electrical conductivity of aqueous electrolyte solutions based on the Debye–Hückel–Onsager theory. Their model accounts for ion specificity, including steric interactions, hydration effects, and spatial charge distributions. Unlike the classical Debye–Hückel–Onsager theory, the modified theory assumes that ion charges are not concentrated at a single point but are instead distributed as clouds, which can be described using a specialised mathematical function.

'We chose not to perform complex calculations of the ion charge distribution function based on first-principles quantum chemistry. Instead, we decided to adjust it by modifying the charge smearing parameter,' explains Yury Budkov, co-author of the paper and Leading Research Fellow at the MIEM HSE Laboratory for Computational Physics.

According to him, incorporating the ion charge distribution function into the theory aligns with modern concepts of matter's structure, based on the quantum theory of multi-electron systems. The new model not only accurately reproduces the experimental relationship between electrical conductivity and concentration at a fixed temperature but also predicts the electrical conductivity of aqueous electrolytes across different temperatures and ion charges. For solutions of sodium, potassium, and lithium chloride salts, the obtained data aligns with experimental results up to concentrations of 4 mol/litre, which represents the best result to date.

In the future, scientists plan to refine the model for non-aqueous electrolyte solutions and adapt it for multicomponent electrolyte systems. This is important from a practical standpoint, as such systems are used in batteries, supercapacitors, and other energy storage devices, where precise calculations of electrical conductivity are essential to improving efficiency and durability.

See also:

HSE Neurolinguists Reveal What Makes Apps Effective for Aphasia Rehabilitation

Scientists at the HSE Centre for Language and Brain have identified key factors that increase the effectiveness of mobile and computer-based applications for aphasia rehabilitation. These key factors include automated feedback, a variety of tasks within the application, extended treatment duration, and ongoing interaction between the user and the clinician. The article has been published in NeuroRehabilitation.

'Our Goal Is Not to Determine Which Version Is Correct but to Explore the Variability'

The International Linguistic Convergence Laboratory at the HSE Faculty of Humanities studies the processes of convergence among languages spoken in regions with mixed, multiethnic populations. Research conducted by linguists at HSE University contributes to understanding the history of language development and explores how languages are perceived and used in multilingual environments. George Moroz, head of the laboratory, shares more details in an interview with the HSE News Service.

Slim vs Fat: Overweight Russians Earn Less

Overweight Russians tend to earn significantly less than their slimmer counterparts, with a 10% increase in body mass index (BMI) associated with a 9% decrease in wages. These are the findings made by Anastasiia Deeva, lecturer at the HSE Faculty of Economic Sciences and intern researcher in Laboratory of Economic Research in Public Sector. The article has been published in Voprosy Statistiki.

Scientists Reveal Cognitive Mechanisms Involved in Bipolar Disorder

An international team of researchers including scientists from HSE University has experimentally demonstrated that individuals with bipolar disorder tend to perceive the world as more volatile than it actually is, which often leads them to make irrational decisions. The scientists suggest that their findings could lead to the development of more accurate methods for diagnosing and treating bipolar disorder in the future. The article has been published in Translational Psychiatry.

Scientists Develop AI Tool for Designing Novel Materials

An international team of scientists, including researchers from HSE University, has developed a new generative model called the Wyckoff Transformer (WyFormer) for creating symmetrical crystal structures. The neural network will make it possible to design materials with specified properties for use in semiconductors, solar panels, medical devices, and other high-tech applications. The scientists will present their work at ICML, a leading international conference on machine learning, on July 15 in Vancouver. A preprint of the paper is available on arxiv.org, with the code and data released under an open-source license.

HSE Linguists Study How Bilinguals Use Phrases with Numerals in Russian

Researchers at HSE University analysed over 4,000 examples of Russian spoken by bilinguals for whom Russian is a second language, collected from seven regions of Russia. They found that most non-standard numeral constructions are influenced not only by the speakers’ native languages but also by how frequently these expressions occur in everyday speech. For example, common phrases like 'two hours' or 'five kilometres’ almost always match the standard literary form, while less familiar expressions—especially those involving the numerals two to four or collective forms like dvoe and troe (used for referring to people)—often differ from the norm. The study has been published in Journal of Bilingualism.

Overcoming Baby Duck Syndrome: How Repeated Use Improves Acceptance of Interface Updates

Users often prefer older versions of interfaces due to a cognitive bias known as the baby duck syndrome, where their first experience with an interface becomes the benchmark against which all future updates are judged. However, an experiment conducted by researchers from HSE University produced an encouraging result: simply re-exposing users to the updated interface reduced the bias and improved their overall perception of the new version. The study has been published in Cognitive Processing.

Mathematicians from HSE Campus in Nizhny Novgorod Prove Existence of Robust Chaos in Complex Systems

Researchers from the International Laboratory of Dynamical Systems and Applications at the HSE Campus in Nizhny Novgorod have developed a theory that enables a mathematical proof of robust chaotic dynamics in networks of interacting elements. This research opens up new possibilities for exploring complex dynamical processes in neuroscience, biology, medicine, chemistry, optics, and other fields. The study findings have been accepted for publication in Physical Review Letters, a leading international journal. The findings are available on arXiv.org.

Mathematicians from HSE University–Nizhny Novgorod Solve 57-Year-Old Problem

In 1968, American mathematician Paul Chernoff proposed a theorem that allows for the approximate calculation of operator semigroups, complex but useful mathematical constructions that describe how the states of multiparticle systems change over time. The method is based on a sequence of approximations—steps which make the result increasingly accurate. But until now it was unclear how quickly these steps lead to the result and what exactly influences this speed. This problem has been fully solved for the first time by mathematicians Oleg Galkin and Ivan Remizov from the Nizhny Novgorod campus of HSE University. Their work paves the way for more reliable calculations in various fields of science. The results were published in the Israel Journal of Mathematics (Q1).

Large Language Models No Longer Require Powerful Servers

Scientists from Yandex, HSE University, MIT, KAUST, and ISTA have made a breakthrough in optimising LLMs. Yandex Research, in collaboration with leading science and technology universities, has developed a method for rapidly compressing large language models (LLMs) without compromising quality. Now, a smartphone or laptop is enough to work with LLMs—there's no need for expensive servers or high-powered GPUs.