HSE Scientists Have Developed a New Model of Electric Double Layer

This new model accounts for a wide range of ion-electrode interactions and predicts a device's ability to store electric charge. The model's theoretical predictions align with the experimental results. Data on the behaviour of the electric double layer (EDL) can aid in the development of more efficient supercapacitors for portable electronics and electric vehicles. The study has been published in ChemPhysChem.
Many devices store energy for future use, with batteries being among the most well-known examples. They can consistently release energy, maintaining steady power output regardless of existing conditions or load, until fully discharged.
In contrast, supercapacitors deliver power in pulses rather than in a continuous flow. If a battery can be likened to a jar that gradually stores energy for long-term use, then a supercapacitor is like a bucket that can be filled and emptied rapidly. This means that a supercapacitor can store energy for a short duration and release it instantly in a large burst.
The power of a supercapacitor depends on its internal resistance, which is notably high. This enables the supercapacitor to operate with very high currents, almost similar to a short circuit. Such a system is helpful when a quick, powerful charge is needed, and it is used in cars, emergency power systems, and compact devices. This effect is made possible by the accumulation of energy in the supercapacitor through an electric double layer (EDL).
The ability of any capacitor to store charge is determined by the area of its plates, the distance between them, and the type of dielectric material used. Since the electrolyte layer between the plates of a supercapacitor is only a few nanometres thick, and the porous coating on the electrodes provides a large surface area, supercapacitors can significantly surpass traditional capacitors in terms of stored energy.

In real-world conditions, the electric double layer is influenced by chemical interactions occurring at the quantum level. Therefore, it is essential to study both the properties of the electric double layer and the factors that influence it to improve the efficiency of electrical devices.
Scientists at HSE MIEM and the Semenov Research Centre of Chemical Physics have developed a model to describe the electric double layer at the interface between an electrode and an electrolyte solution, using a modified Poisson-Boltzmann equation for calculations. The model considers specific interactions between ions and with surrounding water molecules, the impact of an electric field on the dielectric properties of water, and the limited space available for ions at the electrode surface. This enabled a detailed description of the differential electrical capacitance profiles, measuring how effectively the EDL can accumulate charge as the voltage changes. The higher the differential capacitance, the more charge the layer can hold with small voltage changes.
The study examined aqueous solutions of sodium perchlorate (NaClO₄) and potassium hexafluorophosphate (KPF₆) at the interface with a silver electrode. The resulting model successfully predicted the structure of the electric double layer, providing insights into the capacitance behaviour at various ionic solution concentrations. An important achievement has been the successful application of the model to mixtures of the said electrolytes, demonstrating its versatility and suitability for predicting the behaviour of complex electrochemical systems.
'Our theoretical predictions perfectly match the experimental data. This is important because quantifying differential electrical capacitance during an experiment is not trivial and requires meticulous, time-consuming procedures,' comments Yury Budkov, Leading Research Fellow at the Laboratory for Computational Physics of MIEM HSE and one of the authors of the paper. 'This model will enable the prediction of differential electrical capacitance behaviour in conditions where obtaining experimental data is difficult or impossible.'
This is the first in a series of studies aimed at developing a comprehensive theory of the electric double layer at the metal-electrolyte interface as it relates to real-world systems. In the future, the authors plan to extend the model to include systems with stronger ion-electrode interactions, which are the most prevalent ones.
'Such a model will be able to account for additional factors that influence the operation of modern electrochemical devices. This is important for the development of new supercapacitors that can be utilised in a range of devices, from portable electronics to electric vehicles,' according to Yury Budkov.
See also:
Physicists Propose New Mechanism to Enhance Superconductivity with 'Quantum Glue'
A team of researchers, including scientists from HSE MIEM, has demonstrated that defects in a material can enhance, rather than hinder, superconductivity. This occurs through interaction between defective and cleaner regions, which creates a 'quantum glue'—a uniform component that binds distinct superconducting regions into a single network. Calculations confirm that this mechanism could aid in developing superconductors that operate at higher temperatures. The study has been published in Communications Physics.
Neural Network Trained to Predict Crises in Russian Stock Market
Economists from HSE University have developed a neural network model that can predict the onset of a short-term stock market crisis with over 83% accuracy, one day in advance. The model performs well even on complex, imbalanced data and incorporates not only economic indicators but also investor sentiment. The paper by Tamara Teplova, Maksim Fayzulin, and Aleksei Kurkin from the Centre for Financial Research and Data Analytics at the HSE Faculty of Economic Sciences has been published in Socio-Economic Planning Sciences.
'Even among Geniuses, Luck Plays a Role in Winning a Nobel Prize'
Denis Bodrov studies particle physics and works at one of the four electron–positron colliders in the world. In this interview with the HSE Young Scientists project, he talks about his efforts to go beyond the Standard Model, discusses tau leptons, and shares his affection for Moscow.
Larger Groups of Students Use AI More Effectively in Learning
Researchers at the Institute of Education and the Faculty of Economic Sciences at HSE University have studied what factors determine the success of student group projects when they are completed with the help of artificial intelligence (AI). Their findings suggest that, in addition to the knowledge level of the team members, the size of the group also plays a significant role—the larger it is, the more efficient the process becomes. The study was published in Innovations in Education and Teaching International.
New Models for Studying Diseases: From Petri Dishes to Organs-on-a-Chip
Biologists from HSE University, in collaboration with researchers from the Kulakov National Medical Research Centre for Obstetrics, Gynecology, and Perinatology, have used advanced microfluidic technologies to study preeclampsia—one of the most dangerous pregnancy complications, posing serious risks to the life and health of both mother and child. In a paper published in BioChip Journal, the researchers review modern cellular models—including advanced placenta-on-a-chip technologies—that offer deeper insights into the mechanisms of the disorder and support the development of effective treatments.
Using Two Cryptocurrencies Enhances Volatility Forecasting
Researchers from the HSE Faculty of Economic Sciences have found that Bitcoin price volatility can be effectively predicted using Ethereum, the second-most popular cryptocurrency. Incorporating Ethereum into a predictive model reduces the forecast error to 23%, outperforming neural networks and other complex algorithms. The article has been published in Applied Econometrics.
Administrative Staff Are Crucial to University Efficiency—But Only in Teaching-Oriented Institutions
An international team of researchers, including scholars from HSE University, has analysed how the number of non-academic staff affects a university’s performance. The study found that the outcome depends on the institution’s profile: in research universities, the share of administrative and support staff has no effect on efficiency, whereas in teaching-oriented universities, there is a positive correlation. The findings have been published in Applied Economics.
Physicists at HSE University Reveal How Vortices Behave in Two-Dimensional Turbulence
Researchers from the Landau Institute for Theoretical Physics of the Russian Academy of Sciences and the HSE University's Faculty of Physics have discovered how external forces affect the behaviour of turbulent flows. The scientists showed that even a small external torque can stabilise the system and extend the lifetime of large vortices. These findings may improve the accuracy of models of atmospheric and oceanic circulation. The paper has been published in Physics of Fluids.
Solvent Instead of Toxic Reagents: Chemists Develop Environmentally Friendly Method for Synthesising Aniline Derivatives
An international team of researchers, including chemists from HSE University and the A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), has developed a new method for synthesising aniline derivatives—compounds widely used in the production of medicines, dyes, and electronic materials. Instead of relying on toxic and expensive reagents, they proposed using tetrahydrofuran, which can be derived from renewable raw materials. The reaction was carried out in the presence of readily available cobalt salts and syngas. This approach reduces hazardous waste and simplifies the production process, making it more environmentally friendly. The study has been published in ChemSusChem.
How Colour Affects Pricing: Why Art Collectors Pay More for Blue
Economists from HSE University, St Petersburg State University, and the University of Florida have found which colours in abstract paintings increase their market value. An analysis of thousands of canvases sold at auctions revealed that buyers place a higher value on blue and favour bright, saturated palettes, while showing less appreciation for traditional colour schemes. The article has been published in Information Systems Frontiers.


