I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Testing and Verification of Operating
Systems and Information Security Issues

Prof. Alexander K. Petrenko,
petrenko@ispras.ru

12th TAROT Summer School on Software Testing, Verification & Validation
Paris, July, 2016

IS RAS

Institute for System Programming
of the Russian Academy of Sciences

Institute for System Programming

= |SP RAS belongs to the Division
of Mathematical Sciences of the
RAS.

= The Institute employs more than
200 highly qualified researchers
and software engineers, including
12 doctors of science and 45
philosophy doctors.

= Many employees of the Institute
also work as professors in leading
Moscow universities.

E @ Google

Klocwork tﬁﬁ

Yeiudl Synchro
TILINUX BT ivria ETS(E—)
—

@/A\;H' A\ PycBiTex Bunaii

2 /115

ISP m Institute for System Programming
of the Russian Academy of Sciences

Software Engineering Department

= SE Department staff:

= over 40 researchers and engineers, including 3 Doctors of Sc. and 13 Ph.D.

= Major partners and customers

= Foreign partners: Microsoft Research, Intel Labs, Nokia, Google, ETRI,
EADS Telecom, University of Passau, Fraunhofer FOKUS

= Russian partners: NIISI RAS, GosNIIAS, VimpelCom, MCST (Elbrus)
= |nternational organizations: ISO/JTC 1, ETSI, The Linux Foundation

(ntel) [ZEEZE (D TCILiNux

FOUNDATION

L

) Ga 5_ A\ Fyesitex Google

Ortomooawpm
il Apkof cTopal

3 /115

I SP Institute for System Programming
of the Russian Academy of Sciences

ISPRAS Research Model =7

Software Engineering is that part of
Computer Science which is too
difficult for the Computer Scientist.

— Priedrich . Bower —

’ 7! ; AZQUQOTES
¥ /S

ISPRAS Research Model = Industrial Research

4 /115

5/115

::.::E-l

INS

Doma

w
@
o
=)
2
O
)]
y—
(o}
>
£
)]
©
©
o
<
=
8
w
v
3
(14
o
i=
re=]
N—
(@)

Institute for System Programming

1on

KO0 KUIVION LIVID

t

,/w 0 ._v.___,,

ICa

Appl

LHOUUOUY" U .£0I0D" U3USVYJOH L3UoU SEIAQS.:wES&mCUrm

ISP

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

SE Department R&D Domains

= Verification techniques and tools (testing, software model checking,
deductive verification)

= Trusted operating systems (Linux family, ARINC-653 Real-Time OS)
» Tool chains for critical software life cycle support

» Requirements management tools

= System modeling (AADL), simulation, risk analysis

= Cyber-physical system integration (avionics)
= Telecom and operating systems API/ABI standards
= Hardware designs testing

= Model Based Testing foundations

6 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Agenda

What is the “Operating System”?

Spectrum of OS testing and verification methods
State of the Art and ISPRAS’s experience
Information security specifics and OS verification

B W

7 /115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

OS Verification Challenge

e Operating System is a base of software platform. Reliability and
security of OS is ultimate prerequisite of information technologies
quality

o C(ritical software/systems need certification. OS certification is
necessary part of certification process

e IT domains requiring reliable, secure, trusted OSs:

— Servers and work stations

— Data centers

— Avionics, other computing intensive systems
— Mobile devices

— SCADA, etc.

8/115

I SP Institute for System Programming
of the Russian Academy of Sciences

OS Architecture

o Libraries
e Libraries + Kernel
Kernel
e Monolithic Kernel Core kernel
Drivers
. 7,

e Microkernel
U Microkernel modules

9/115

I SP Institute for System Programming
of the Russian Academy of Sciences

OS Architecture. Scale

_ Libraries — ~1 million functions, ~ 10° KLOC
e Libraries + Kernel

Kernel
¥ >/
e Monolithic Kernel Core kernel - ~ 5-103 KLOC
< Drivers - ~ 5-100 KLOC

e Microkernel

~_ Microkernel modules >-200 KLOC

10 /115

IS dRAS

Institute for System Programming
of the Russian Academy of Sciences

Operating Systems Structure

User-space
Applications
System o System ' \
/ Libraries Utilities Services Operating
Signals, system
Special System Memory updates,
File Systems | Calls Scheduling,
v v ...
Kernel Kernel-space
e Kernel Device Drivers
Modules Threads

o

Kernel Core (mmu, scheduler, IPC)

)

Platform

T Interrupts, DMA

l 10 Memory/I0 Ports

Hardware

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Spectrum of Testing/Verification
Approaches

e Testing (dynamic analysis, monitoring, run-time
verification, fault injection)

o Static analysis (/ightweight analysis, software model
checking)

o Static/dynamic analysis (DART, concolic testing)
e Deductive verification

12 /115

ISPLTYY e riceaencoms of sconces
Spectrum of Testing/Verification
Approaches vs. Verification Aspects

Testing (dynamic analysis, monitoring, run-time verification)
Static analysis (/ightweight analysis, software model checking)
Static/dynamic analysis (DART, concolic testing)

o Deductive verification

Testing/Verification aspects:

e Functionality / Conformance / Reliability / Security / . . .
o Usability testing

e Performance modeling and testing

13/115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Static Analysis Dynamic Analysis

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Static Analysis Dynamic Analysis

+ All paths at once — One path only

I SP Institute for System Programming
of the Russian Academy of Sciences

Static Analysis Dynamic Analysis

+ All paths at once — One path only

+ Hardware, test data and test — Hardware, test data and test
environment is not required environment is required

I SP Institute for System Programming
of the Russian Academy of Sciences

Static Analysis Dynamic Analysis

+ All paths at once — One path only

+ Hardware, test data and test — Hardware, test data and test
environment is not required environment is required

— There are false positives + Almost no false positives

I SP Institute for System Programming
of the Russian Academy of Sciences

Static Analysis Dynamic Analysis

+ All paths at once — One path only

+ Hardware, test data and test — Hardware, test data and test
environment is not required environment is required

— There are false positives + Almost no false positives

— Checks for predefined set of + The only way to show the

bugs only code actually works
18 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

State of the Art.
Methods and Tools. Testing

e 3viewsonOS :

— OS as API for applications
— OSis an OS kernel

— OS is a part of software/hardware platform

e OS as API for applications
e Problems

— Huge set of APIs (over 1 million functions)
— Lack of specifications (poor quality of specifications)

19/ 115

ISPLTYY e riccn acem of sconces
State of the Art.
Methods and Tools. Testing

e 3 views on OS:

— OS as API for applications
— OSis an OS kernel

— OS is a part of software/hardware platform

e OS as API for applications.
e Problems
— Huge set of APIs (over 1 million functions)
— Lack of specifications (poor quality of specifications)
e Methods
— Traditional (handmade) test suites
— Specification/model based testing
o Specification based testing tools

KVEST (Nortel, ISPRAS, 1994-1999)

UniTESK/CTESK (ISPRAS, 2000-2007
— SpecExplorer (Microsoft, 2004-2009)

20 /115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

OLVER — Model Based Testing
of Linux Basic Libraries!”

(*) The project was supported by Russian Ministry of
Education and Science and by The Linux Foundation

I SP Institute for System Programming
of the Russian Academy of Sciences

OLVER: Open Linux VERification

Linux Standard Base — LSB 3.1

LSB Core 3.1 /1SO 23360 LSB C++ LSB Desktop

1
ABI Utilities ELRRRM, ...

/

LSB Core ABI

GLIBC
libc libcrypt libdl libm libpthread librt libutil
libpam libz libncurses

More 1500 interfaces 22/115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

OLVER Process

LSB Requirements Test Reports

..

Specifications CTesK
—p Automatic —Pp| Tests
Test Scenarios Generator

Test Suite

..

Testing Quality
Goals

Linux
System

23 /115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Technology: KVEST (1999)/UniTESK (2002)
Test Oracles

.| System R
[Test stimuli } T > under - > 7
Specifications Test System under test is
(pre- and [} oracle a black box that
postconditions) provides AP
l l l (functions,
procedures etc.)
+ &R

* T.J. Ostrand and M. J. Balcer’s “The Category-Partition Method for Specifying and Generating
Functional Tests” (in CACM, 31(6):676—686, June 1988).

* |.Burdonov, A.Kossatchev, A.Petrenko, D.Galter. KVEST: Automated Generation of Test Suites
from Formal Specifications. Proceedings of Formal Method Congress, Toulouse, France, 1999,
LNCS, No. 1708.

* |.Bourdonov, A.Kossatchev, V.Kuliamin, and A.Petrenko. UniTesK Test Suite Architecture. Proc. of
FME 2002. LNCS 2391.

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

KVEST/UniTesK Workflow

A A=

Specification Model of test
Model of coverage (test scenario)

' v
o
»e

Output analysis Test stimuli generator
Trace analysis 25/ 115

Implementation

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

UniTESK Test Scenario Model

Test
Engine

<

A

Test
Scenario

So called “Implicit automata” or
EFSM derived during on-the-fly test scenario
execution.

Implicit automata is an ADT with

2 operations:

- recognise_node_ID () -> ({new, visited} x ID)
- next_call (next_input_stimulus) -> (...)

The test engine step by step builds/explores all

nodes (states) and all available function calls
(transitions).

26 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Requirements Catalogue

The Open Group Base Specifications 1ssue @
I[EEE 5td 1003.1, 2004 Edition
Copyright @ 2001-2004 The IEEE and The Open Group, All Rights resemved.

NAME
memcpy - copy bytes in memaory
SYNOPSIS

#include <string.h>

void *memcpy(void *restrict sI, const void *restrict s2Z, size t n);

DESCRIPTION

(LA &> The functionality described on this reference page is aligned with the ISO C standard. Any conflict between the requirements described here and the ISO C standard
Is unintentional. This volume of IEEE Std 1003.1-2001 defers to the ISO C standard. <&@

{memcpy.01} The memecpy() function shall copy n bytes from the object pointed to by 52 into the object pointed to by s1. {app.memcpy.02} If copying takes place between objects that
overlap, the behavior is undefined.

RETURN VALUE

{memcpy.03} The memcpy() function shall return s1; no return value is resemnved to indicate an error.

27 /115

ISP m Institute for System Programming
of the Russian Academy of Sciences

memcpy() specification template

pre

{

/I If copying takes place between objects that overlap, the behavior is undefined.
REQ("app.memcpy.02", "Objects are not overlapped”, TODO_REQ());

return true,

}
post

{

[*The memcpy() function shall copy n bytes from the object
pointed to by s2 into the object pointed to by s1. */
REQ("'memcpy.01", "s1 contain n bytes from s2", TODO_REQ());

[* The memcpy() function shall return s1; */
REQ("memcpy.03", "memcpy() function shall return s1", TODO_REQ());

return true,

28/115 |

ISP m Institute for System Programming
of the Russian Academy of Sciences

memcpy() precondition

specification
VoidTPtr memcpy_spec(CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n)
{
. pre
{
[* [Consistency of test suite] */
REQ("™, "Memory pointed to by sl is available in the context",
isValidPointer(context,sl));
REQ(", "Memory pointed to by s2 is available in the context",
iIsValidPointer(context,s2));

[* [Implicit precondition] */
REQ(™, "Memory pointed to by s1 is enough”, sizeWMemoryAvailable(sl) >=n

REQ("™, "Memory pointed to by s2 is enough", sizeRMemoryAvailable(s2) >=n)

/[1f copying takes place between objects that overlap, the behavior is undefined.

REQ("app.memcpy.02", "Objects are not overlapped”, :
lareObjectsOverlapped(s1,n,s2,n));

Gessssmssnnnnnn I.‘ -éf.l.j"r"ﬁ"ffuue".; ... 2.9../..]-.15...............'

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

memcpy() postcondition

specification
§VoidTPtr memcpy_spec(CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n) {
. post
{
[*The memcpy() function shall copy n bytes from the object
pointed to by s2 into the object pointed to by s1. */
REQ("'memcpy.01", "s1 contain n bytes from s2",
equals(readCByteArray VoidTPtr(sl,n), @readCByteArray VoidTPtr(s2,n))

);

[* [The object pointed to by s2 shall not be changed] */
REQ("™, "s2 shall not be changed",
equals(readCByteArray VoidTPtr(s2,n), @readCByteArray_VoidTPtr(s2,n)));

[* The memcpy() function shall return s1; */
: REQ("memcpy.03", "memcpy() function shall return
s1",equals_VoidTPtr(memcpy_spec,sl));

[* [Other memory shall not be changed] */
REQ("™, "Other memory shall not be changed",
equals(readCByteArray MemoryBlockExceptFor(getTopMemoryBlock(sl), s1,n),
@readCByteArray MemoryBlockExceptFor(getTopMemoryBlock(sl), s1,n)))
return true; :

SP Institute for System Programming

of the Russian Academy of Sciences

Requirements Traceability

Tﬁ failure 269: Postcondition failed Requirement Failed: fmycur.04} If {(newrow, newcol) is not a valid address for the Eerminal in use, mycur() 2= |EI|1|

File Edit W¥ew Go Bookmarks Tools Window Help
Back ~ Forward + Reload Stop I@ file: {5/ Run/2006-06-21_21-47-53/reportFailures/Failure:20269_0,html
Fallures . failure 269:
All failures
failure 1 Postcondition failed
failure 2 (Requirem’ent failed: {mcur.04}) If (newrow, newcol) is not a valid address for the terminal in use, mrcur{) fails
failure 3 —
failure 4 Seanuh
failure 5 trace results/2006-06-21_21-47-33/move_scenario_2006-06-21_21-47-25.utt, line 269
fa!lure & occurence
failure 7 - -
failura & scenario maove_scenario
failure 9 state MULL =
| failure 10 transition nCUrses_mycur_scen ()
e 263 more... = =

specification function | mycur_speci)

z parameter value struct Threadld context = struct { 0, 9548, 2086060000 }
Scenarios

O _
All scenarios parameter value MNCursesPosition * @cursorPosOld = struct { 0,0 F

parameter value MCursesPosition * @cursorPoshew = struct { 10000000, 10000000 }

parameter value NCursesPosition * cursorPosOld = struct £ 0,0 F

parameter value NCursesPosition * cursorPosMew = struct { 10000000, 10000000

return value (int) 0
coverage C
2 branch The only branch

bkgd_simple_scenario
baorder_scenario prime formula invariant type NCursesPosition * (@cursorPosCld) = true
char_add_scenario

- prime formula invariant type MCursesPosition * {cursorPosOld) = true
char_scenario - - - -
chgat_scenario prime formula invariant type MCursesPosition * {@cursorPosMew) = true
chstr_add_scenario prime formula invariant type NCursesPosition * (cursorPosMew) = true
clear_scenario -
1| | »
[£3 2 E3 @3 | Doe ==

Failure report: requirement {mvcur.04} failed
31/115

Institute for System Programming

of the Russian Academy of Sciences

Requirements Coverage Report

* [+)fs.gloh (64 1 33 £ 0)
[+fs.meta.access (123 756 /0y
[+fs.metaraeta (111744 7 0)
+ [+fs.meta.statvfs (457 127 0)
[~Ifsname (24 /27 1)

o [+lrealpath (1576700

o [~]dirnarae (502§ 0)

dhirname, 011

The dimarme() fanction shall return a pomter to a strng that is the pareat deectory of path,

dirname, 01,01

The dimarme() fanction shall talce a pownter to a character string that cottaing a pathname, and renum a peinter to a strng that 2 a pathname of the parent dwectory of that fle
dirvame 02

Trailing ¥ characters in the path are not counted ag part of the path

dirname 03

If path does not contamn a ', then dimarne() shall retum a potter to the stang * "

chrname. (14

If path = & null pointer or posts to an empty stnng, denamed) shall return a pomter to the strmg "

apep. cirnarne. 08

The dimarne() fanction need not be reentrant. A functon that i3 not required to be reentrant 5 not recuired to be thread-safe
dirvame, 07

If path 5 a sull pointer or posts to an empty stnng, a pomter to a stang " & retumed

app. irnarne. 08

The dimarme() fanction may moddy the strng peinted to by path, and may retuen a poiater to stanc storage that may then be overweitten by subseeuent calls to dirnamed),

o [~|hasenarme (4 40/ 1)

bagename (]

The bagenamer) function chall retum a peinter to the fnal component of path

bagename 01071 (FAILED)

The basename() functon chall take the pathname pomnted to by path and retum a ponter to the final component of the pathname, deleting any tradng ' characters
bagename (12

Ifthe stnng pomnted to by path consiste entirely of the 'f character, basename() chall retum a potnter to the strng '

bagename (3

Ifthe stnng pointed to by path 12 exactly "™, o 15 wplementation-defined whether ¥ or "™ 12 returned

basenamme. (4

If path &5 a null pointer or pomts to an empty stnng, basenarme() shall retum a podnter to the sting *

=y k asename, U

The basename!) funchen may modifiy the strmg pomted to by path, and may return a pomter to static storage that may then be oveswentten by a subsecquent call to basenama()
At k asefafe, Db

The basenamer) function need not be reentrant A fanction that i aot required to be reeatrant i3 not required to be thread-safe,

* [+fs.symlink (327 16/ 0)
* [+fs.ompfile (5% 7 18/ 0)
; s [+linfile (11517 375/0)
I + [+iofeream. buffer (21/1/0)

+ [+iofeream. fstream (747 / 37/ ()
* [+liofstream.lock (31707 0) 32 / 115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Requirements Coverage Report (2)

finclude <curses.h>

int wrrour (int oldrow, int oldeol, int zmewrow, int rnewcol):

DESCRIPTION

{mwveur.01} The povenr) fiunction outputs one of more commands to the terminal that move the terminal's
cursor to (ewrow, Reweal), an absolute position on the tertminal screen. {mveur.02} The (oidrow, aldeal)
arguments specify the former cursor posttion. {myveur03.01} Specifying the former position 15 necessary on
tertminals that do not prowide coordinate-based movement commands. {mwveur.03.02} On terminals that
provide these commands, Curses may select a more efficient way to move the cursor based on the former
position. {mveur 04} If (rewrow, meweal) 15 not a valid address for the terminal m use, svenrdd fails.
(mwveur 05} If (oldrow, aldeal) iz the same as (ewrane, eweal), then pevenrs) succeeds wathout taking
aty actiotn, {mveuwr.06) If srvonry) outputs a cursor movement command, it updates ite information
concerning the location of the cursor on the termminal

RETURN VALUE

(mveur07.01} Upen successfil completion, sevenr)) returne OF {mveur.07.02} Otherwize, it returns
EEE.

ERRORS

Mo errors are defined.

APPLICATION USAGE < 33/115

| 56 &b \Z E8 @& | I 1IN

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

OLVER Results

« Requirements catalogue built for LSB and POSIX
- 1532 interfaces
.« 22663 elementary requirements
« 97 deficiencies in specification reported
« Formal specifications and tests developed for
« 1270 interface (good quality)
« + 260 interfaces (basic quality)
« 80+ bugs reported in modern distributions

« OLVER is a part of the official LSB Certification test suite
http://ispras.linuxfoundation.org

34 /115

http://ispras.linuxfoundation.org/

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

OLVER Conclusion

« model based testing allows to achieve better
qguality using less resources

« maintenance of MBT is cheaper

35/115

I SP m Institute for System Programming
of the Russian Academy of Sciences

OLVER Conclusion

« model based testing allows to achieve better
qguality using less resources
if you have smart test engineers

« maintenance of MBT is cheaper
if you have smart test engineers

36 /115

mEE Institute for System Programming
ISP of the Russian Academy of Sciences
[J
OLVER Conclusion

« model based testing allows to achieve better
qguality using less resources
if you have smart test engineers

« maintenance of MBT is cheaper
if you have smart test engineers

» traditional tests are more useful for typical test
engineers and developers

37 /115

mEE Institute for System Programming
I SP of the Russian Academy of Sciences
[J
OLVER Conclusion

« model based testing allows to achieve better
qguality using less resources
if you have smart test engineers

« maintenance of MBT is cheaper
if you have smart test engineers

» traditional tests are more useful for typical test
engineers and developers

» S0, long term efficiency is questionable
o but...

38/115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Configuration Testing
Product Line Testing

ISPLIX e fucan acacom of soonces
State of the Art.
Methods and Tools. Testing

e 3 views on OS:
— OS as API for applications
— OS is a part of software/hardware platform

e OSis a part of software/hardware platform
e Problems
— Huge number of configurations
— Unavailable hardware devices and lack of devices models
e Methods
— Ad-hoc = proprietary know-how

Systematical reduction of target configurations
V.V. Kuliamin. Combinatorial generation of software-based OS configurations. The Proceedings of

ISP RAS], 2012.
e Tools
— No commercial or popular tool
e Testing quality
— Not available

40/ 115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Linux Product Line Verification

e University of Waterloo

—Y. Xiong, A. Hubaux, S. She, and K. Czarnecki,
“Generating range fixes for software
configuration,” in Proc. of ICSE, 2012.

e University of Passau

— Sven Apel, Alexander von Rhein, Philipp Wendler,
Armin GroRlinger, and Dirk Beyer. Strategies for
Product-Line Verification: Case Studies and
Experiments. In Proc. of ICSE, 2013.

41 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

OS Kernel
Testing/Verification

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

State of the Art.
Methods and Tools. Testing

e 3 views on OS:

— OS as API for applications
— OSis an OS kernel

— OS is a part of software/hardware platform

e OSis akernel
e Problems
— Event driven multithreading systems
— Lack of specifications (poor quality of specifications, Microsoft Windows is an exclusion)
e Methods
— Run-time verification

http://code.qoogle.com/p/kedr

— No commercial or popular tool applicable in kernel mode
e Testing quality
— Average test coverage lower 20%

43 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Run-Time Verification

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Sanitizer Tools Family.
Google research group of Konstantin Serebryany(*)

Run-time verification and compile-time code instrumentation.

Tools:

e MemorySanitizer: fast detector of uninitialized memory
use in C++

e AddressSanitizer: A Fast Address Sanity Checker

e Dynamic Race Detection with LLVM Compiler

e ThreadSanitizer — data race detection

e KernelThreadSanitizer — data races in Linux Kernel

(*) http://research.google.com/pubs/KonstantinSerebryany.html
45 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Robustness Testing

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Fault Handling Code

« Isnotso fun
« Isreally hard to keep all details in mind
« Practically is not tested

« Is hard to test even if you want to

- Bugs seldom(never) occurs
=> low pressure to care

47/ 115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Why do we care?

« It beats someone time to time
» Safety critical systems
« Certification authorities

48 / 115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Operating Systems Structure

User-space
Applications
System o System ' \
/ Libraries Utilities Services Operating
Signals, system
Special System Memory updates,
File Systems | Calls Scheduling,
([...
Kernel Kernel-space
e Kernel Device Drivers
Modules Threads

Kernel Core (mmu, scheduler, IPC)

o /

T Interrupts, DMA l 10 Memory/I0 Ports

Hardware

49/ 115

ISPLIE e ricean rcacomy of conees
Run-Time Testing of Fault Handling

o Manually targeted test cases
+ The highest quality
— Expensive to develop and to maintain
— Not scalable
- Random fault injection on top of existing tests
+ Cheap
— Oracle problem
— No any guarantee
— When to finish?

50/ 115

ISPLTYY e riceaencoms of sconces
Systematic Approach

Hypothesis:

» Existing tests lead to more-or-less
deterministic control flow in kernel code

« ldea:

« Execute existing tests and collect all potential
fault points in kernel code

« Systematically enumerate the points and
inject faults there

51/115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Fault Injection Implementation

« Based on KEDR framework’

» intercept requests for memory allocation/bio
requests

» tocollect information about potential fault
points

- toinject faults

« also used to detect memory/resources leaks

(*) http://linuxtesting.org/project/kedr 52/ 115

ISP m Institute for System Programming
of the Russian Academy of Sciences

KEDR Workflow

Kernel Module
Loading Facilities

Loading Detector

Call Instrumentation

Facilities i l |
Call Monitor - I
Kernel
Leak Checker Module
under Test
Fault Simulator \ /
A
Control Data Kernel mode
Interface Collector User mode
[
[
. ‘ Applications

Kernel Module Analysis ” (Test Suites,
Cert. System, etc.)

API| + Tools

53/115

htto://linuxtestina.ora/project/kedr

ISP m Institute for System Programming
of the Russian Academy of Sciences

Systematic VS. Random
e + 2 times more e + Cover double
cost effective faults

e + Repeatable results ¢ — Unpredictable

e — Requires more e — Nondeterministic
complex engine

54 /115

O n n g Institut forlSysem Programm'ing

MNo.
FOO11

FOOD10

FOOO9

FoOO3

FOOO7

FOOO&

FOOOS

FoOOO4

FOOO3

FOOD2

FOOO1

Added on Accepted

Jlinux-ext4/msg46743.html
commit

https://lkml.org/lkmi/ 2014
[7/21/198

commit
https://lkml.org/lkmi/2014
[5f12/147

commit
https://Ikml.org/lkmil/2014
f4/14/189

commit
https://Ikml.org/lkmi/ 2014
[f2/6/18

commit
https://lkml.org/lkmi/2013
f10/26/163

commit
https://lkml.org/lkmi/2013
[5/5/64

commit

https://Ikmlorg/lkml/2013
/5/13/426

Type Brief

Crash extd: When mounted with backup superblock 2014-12-27 http://www.spinics.net/lists
online resize leads to BUG_ON or causes
filesystem corruption

Crash f2fs: Possible wuse-after-free when umount 2014-07-25
filesystem

Crash extd: Destruction of ext4 groupinfo_caches 2014-05-12
during one mount causes BUG_OM for other
mounted ext4 filesystems

Crash f2fs: BUG_ON() is triggered in 2014-04-18
recover_inode_page() when mount valid f2fs
filesystem

Crash f2fs: f2fs unmount hangs if f2fs_init_acl() fails 2014-02-17
during mkdir syscall

Deadlock f2fs: a deadlock in mkdir if ACL is enabled 2013-10-28

Crash extd: system hangs after failure im 2013-07-01
extd_mb_new_preallocation()

Deadlock extd4: deadlocks after allocation failure in 2013-06-04
extd_init_io_end()

Crash jfs: Sewveral bugs in jfs_freeze()
jfs_unfreeze()

Crash ext4: NULL dereference
ext4_calculate_overhead()

Crash

because of ext4_fill_super() wrongly reports

and 2013-05-24

commit
https://Ikml.org/lkmi/2013
/5/24/76

commit

in 2012-11-28 https://Ikmlorg/lkm|/2012

f11/28/354
commit

ext4: NULL pointer dereference in mount_fs() 2012-11-08 https://bugzilla.kernel.org

/show_bug.cgi?id=48431

Status
Fixed
kernel
3.19-rc4

Fixed
kernel
3.17-rcl
Fixed
kernel
3.16-rcl

Fixed
kernel
3.17-rcl

Fixed
kermel
3.15-rcl

Fixed
kernel
3.12-rc3
Fixed
kernel
3.10-rc3

Fixed
kernel
3.10-rc3
Fixed
kernel
3.10-rc3

Fixed
kernel
3.8-rcl
Fixed
kernel

i

ISP m Institute for System Programming
of the Russian Academy of Sciences

Concolic Testing

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Concolic Testing

» Concolic = Symbolic + Concrete
« SUT runs in concrete and in symbolic modes

« Symbolic execution is used to collect
conditions and branches of the current path

« Collected data is used to generate new input
data to cover more execution paths

57 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Concolic Tools

DART C lp_solver
SMART C Linux Ip_solver
CUTE C Linux Ip_solver
CREST C Linux Yices
EXE C Linux STP
KLEE C (LLVM bitcode) Linux STP
Rwset C Linux STP
PathCrawler C NA NA

SAGE Machine code Windows Disolver

58 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

S2E for Kernel Testing

« based on KLEE
» uses patched Qemu

« Ssource code is not
required

« supports plugins

(*) https://s2e.epfl.ch/

59/115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Testing Aspects

T2C | OLVER | Autotest | Cfg FlI KEDR-LC| S2E | RH KStrider
Monitoring Aspects - - + +- + +-
[Kinds of Observable Events

interface evenis |« 0«0 -
internal events BN N

[Events Collection

internal I =+
external

embedded
IRequirements Specification | Specific |Plugin Specific Specific
in-place (local, tabular) Dis Dis
formal model (pre/post+invar Co Co
assertions/prohibited events External | Co | Co Co

[Events Analysis

External| External

online
in-place I s e
outside

offline |+

60 / 115

ISP m Institute for System Programming
of the Russian Academy of Sciences

T2C | OLVER | Autotest | Cfg FlI KEDR-LC| S2E | RH |KStrider
Active Aspects +- |+ - + + -
Target Test Situations Set Specific
requirements coverage
class equivalence coverage
model coverage (SUT/reqs)
source code coverage almost | +
Test Situations Setup/Set Gen
passive +-
fixed scenario
manual
pre-generated
coverage driven +-
random +-
adapting scenario
coverage driven
source code coverage almost |
model/... coverage
random
Test Actions
application interface
HW interface
internal actions
inside
outside

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Software Model Checking

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

State of the Art. Methods and Tools.
Software Model Checking

e Approaches:
— Counterexample guided abstraction refinement (CEGAR) - Edmund Clarke et al.
— Configurable Program Analysis — Dirk Beyer
— Abstract interpretation - Patrick Cousot and Radhia Cousot
— Bounded Model Checking — BMC — Edmund Clarke et al.

e Gold practices
e Microsoft Research (SLAM

ISP[[IY]| ¢ LDV - Linux Driver Verification

e Problems
— Lack of specs
— Limitations on size and complexity of modules (no more 30-100KLine)

e Tools
— Many but no commercial or popular tool

o Verification quality

63 /115

IS RAS

Institute for System Programming
of the Russian Academy of Sciences

SVCOMP‘2012 Results

Competition

BLAST

CPAchecker

CPAchecker

ESBMC 1.17

Predator

QARMC

candidate 2.7 ABE 1.0.10 Memo 20111011 |-HSF
Affiliation Viehna, BrNo,
Austria |Germany |Czechia
ControlFlowIntege 140 102 28 100 17 39
93 files, max score: 3200 s 4500 s 580 s 2400 s 1100 s 580 s
144
DeviceDrivers 63 20 80 80 68
59 files, max score: 160 s 35s 165 1.9s 140 s 655
103
DeviceDriverstd 10 0 1 0 --
41 files, max score: 66 870s 0s 110 s 0s
HeapManipulation 1 -- 17 20 -- -- --
14 files, max score: 24 210s 1.0s
SystemC -- 8 21 a8 57 36
62 files, max score: 8 245 630 s 820 s 5000 s 1900 s
Concurrency 0 -- 0 -- 1 --
8 files, max score: 11 0s 0s 14s
Overall 231 48 206 138 148 236 159
277 files, max score: 15000 s 580 s 2700 s 1700 s 5600 s 14000 s ||3800 s

435

64 /115

Wolverine

Institute for System Programming
of the Russian Academy of Sciences

Competition candidate CSeq-Laz CSeq-MU |[ESBMC |FrankenBit| LLEMC |Predator|/Symbiotic/|Threader UFO Ultimate |Ultimate
pe q Y q Y

1.22 2 Automizer| Kojak
Representing Jury ’ '
Member Fischer Parlato Cordeiro| Gurfinkel Falke Vojnar Popeea |[Albarghouthi|| Heizmann Nutz
Affiliation Passau, Brno, [Stellenbosch,||Southampton, |Manaus, | Rittsburgh, ||Karlsruhe,|| Brno, Brno, Munich, || Pittsburgh, || Freiburg, || Freiburg,

Germany echia || South Africa UK Brazil USA Germany || Czechia | Czechia ||Germany USA Germany | Germany ||
BitVectors - - - i7 - 86 -92 39 - - - -23
49 tasks, max. score: B6 1500s 39 s 28 s 220 s 1100s
Concurrency - 136 136 32 - 0 0 -82 100 - - 0
78 tasks, max. score: 136 1000 s 1200s 30000s 0.0s 00s 57s 3000s 0D0s
ControlFlow 455 - - 949 986 511 41 - 912 164 214
B43 tasks, max. score: 1261 420005 6500 s 35000 s 63005 34005 30000s 14 000 5 6000 s 5100 s
ControlFlowinteger “I5E 71 = = 3] | 3% | i |] | 51 = | TEd EE] | 57
181 tasics, man. soone: 255 350005 38003 240005 5300s 10000 5 2200s Z2000s 9500s 58005 50005
Loops [T) -16 - — | EB | 76 | [5 | 7 | 76 - | 7] 76 | 9
65 tasics, man. score: 99 1100s 600 5 ga1s 36003 50s 1605 las 4a9s a4 1Ms 150s
ProductLines olE 928 715 | - - | 928 | 905 | [75 | 929 | ETT | - | 927 0 | 0
597 tasks, max. score: 323 G600 350s 3100s T500s 950s 2600 s 1200s 170003 48005 ads ads
DeviceDriversed 2463 2613 - - - 2358 1] 50 980 - 2642 - 0
1428 tasks, max. score: 2766 390 000 s 2B 000 s 140 000 s 0.0s Q95 2200s 5700 s 0D0s
HeapManipulation 132 107 71 - - 97 - 111 105 - - - 18
B0 tasks, max. score: 135 12 000 s 210 s i0s aid s 9.5s 155 35s
MemorySafety 4 95 9 - - -136 - 38 -130 - - - 0
61 tasks, max. score: 98 11 000 s 460 s 690 s 1500s 170 s 75s 0D0s
Recursive - - - -53 - 3 -18 6 - - 12
23 tasks, max. score: 39 4800s 038s 0.12s 093s 850 s
SequentializedConcurrent] - - - 244 - -46 -32 - a3 49]
261 tasks, max. score: 364 38 000 7700s 770 s 4 BO0 s 3000s 1200s
5

Simple - - - 31 37 1] 0 -22 - 67 - 0
45 tasks, max. score: 67 27000s B30 s 0.0s 00s 13s 480 s 0.0s
Overall - - - 975 - -184 -220 - - 399 139
2B68 tasks, max. score: 4718 280 000 s 11000 s 42 000 s 10 000 s 7 600 s

Institute for System Programming

of the Russian Academy of Sciences

SVCOMP‘2015 Results

|c-.-uu-u

servsarieg oy
| Marar

4 e P =1 Mo Larigal U Ao wejrar o A Hnmare

il -

5 00 ey, . ncore: @ 52

A anee Pacrar i, g, Taiwas| Bdtel UK ([Camuabela B, Pasts, Frarss prrTe—— SRt Maraus, Basl [re——— Sy B, Pimssrgs, (| Saln Lk City, USA|| Fraileg, ey ket Soumampion, UK
Gamary hira Spain Crachia Sirgapons 4 Aea Bcralia L= [1-%Y Carrarry
[Atays - - - e - - - - - - - - -) a8 -
06 e, e weorer 18 ssn asle 0ns
Sfvecens - 4 - (] - - - - - - - - - &0 - 5 £1 -
47 tankon, . ncore: @1 s i ' e L
e - - - i ok - - - - 1233 - ire - - - - 4
1000 sy, e e 1322 e oo 6 000 x
[Cermmificw - - L] - - - - - - - - - - 1Y &2 -
127 e, . e 3 122 1 0M M 0 40X 10 e
[— u a N “
1 Lk, e e T8 neeea 11004 [1002
1m0 an 1
1142 Lk . i 1T b nazzezs wweza s
Lo m ™ N ™
143 Lt ram warmany s 1104 amcs 110
R [o
187 Lo e sz 1acea neses
- - - - - - - - - - P & -
ma EL T
Acati - - - - - - - - - - - - -
1tk . ncore: L&
HedpMaripndatics - - i - - - - - - m by ety -
00 e, e weorer 108 Lan A a6 =T
Mty S bty - - I - - - Fo] - - E-38 * -] -
28 bk, e, acore: 31 ET 2100 e 1 Am
e - & - - - - - - - - F-] 1] -
24 taukon, mrom. ncore: &0 e m E
S - - - - - - - - - -) -
261 bk, e wcore: 364 Tan
- - - - - - - - - -] 3 -
L Lain
10 - -) - - - - - - -
sa00s o

66 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

LDV: Linux Driver Verification

I SP m Institute for System Programming
of the Russian Academy of Sciences

Commit Analysis!”

» All patches in stable trees (2.6.35 — 3.0)
for 1 year:

o 260ct2010-26 0Oct 2011
« 3101 patches overall

(*) Khoroshilov A.V., Mutilin V.S., Novikov E.M. Analysis of typical faults in Linux operating system drivers.
Proceedings of the Institute for System Programming of RAS, volume 22,

2012, pp. 349-374. (In Russian)

http://ispras.ru/ru/proceedings/docs/2012/22/isp_22 2012_349.pdf

Raw data: http://linuxtesting.org/downloads/Idv-commits-analysis-2012.zip 68/ 115

http://ispras.ru/ru/proceedings/docs/2012/22/isp_22_2012_349.pdf
http://linuxtesting.org/downloads/ldv-commits-analysis-2012.zip

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Commit Analysis

« All patches in stable trees (2.6.35 —-3.0) for 1
year:

o 260ct2010-260Oct 2011
« 3101 patches overall

Unigue commits to drivers
(1503 ~ 50%)

Support of a
new functionality
(321 ~ 20%)

Bug fixes
(1182 ~ 80%)

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Commit Analysis

» All patches in stable trees (2.6.35 — 3.0)
for 1 year:

o 260ct2010-26 0Oct 2011
« 3101 patches overall

Typical bug fixes
(349 ~ 30%)

Fixes of data races,
deadlocks
(71 ~ 20%)

Generic bug fixes Fixes of Linux kernel APl misuse
(102 ~ 30%) (176 ~ 50%)

Rule classes

Correct usage of
the Linux kernei

A DI
AT

(M17R —~ ENO0A)

Generic
(102 ~ 30%)

Svynchronization
(71 ~ 20%)

Types

Alloc/free resources
Check parameters
Work in atomic context
Uninitialized resources

Synchronization
primitives in one thread

Style

Network subsystem
USB subsystem
Check return values
DMA subsystem
Core driver model
Miscellaneous

NULL pointer
dereferences

Alloc/free memory
Syntax

Integer overflows
Buffer overflows
Uninitialized memory
Miscellaneous
Races

Deadlocks

Number of
bug fixes

32
25
19
17

12

10
10
9
7
4
4
27

31

24
14
8
8
6
11
60

11

Percents

~18%
~14%
~11%
~10%

~(%

~6%
~6%
~5%
~4%
~2%
~2%
~15%

~30%

~24%
~14%
~8%
~8%
~6%
~11%
~85%
~15%

Cumulative
total
percents
~18%
~32%
~43%
~53%

~60%

~65%
~71%
~76%
~80%
~82%
~85%
100%

~30%

~54%
~68%
~76%
~83%
~89%
100%
~85%
100%

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Software Model Checking

« Reachability problem

entry

point
Cuw)
(x>y) \lx>y)

e D
(> e By

Iz <0) z<0) I(z < Q) (z < 0)

(oS ey (@@ (o> Camd>

error location
72/ 115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Verification Tools World

e int main(int argc,char* argvl[])

* |

o cher_func (Va% void other_func (1nt Vv)
{

") assert(x '= NULL);

73/115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Device Driver World

int usbpn_open(struct net_device *dev) { ... };
Int ushpn, close(struct net,_device "dev) (i,
~*"struct net_device ops usbpn_ops = {
.ndo_open = usbpn_open, .ndo_stop = usbpn_close
s g
|

Nt USBPR " BrobetSiract UEh infertace \int Const strict Usb_device_id *id){
dev->netdev_ops = &usbpn_ops;

err = register_netdev(dev); < {Callback interface

LR}
«* v

}

void usbpn_disconnect(struct usb_interface *intf){...} procedures registration

struct usb_driver usbpn_struct = {
.probe = usbpn_probe, .disconnect = usbpn_disconnect,
I3
int __init usbpn_init(void){ return usb_register(&usbpn_struct);}
void __ exit usbpn_exit(void){usb_deregister(&usbpn_struct);}

module_init(usbpn_init); _Nt? exp]lClt calls to
module_exit(usbpn_exit); init/exit procedures

- J

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Driver Environment Model

e int main(int argc,char* argvl[])

* {

. usbpn 1nit ()

. for(;;) {

. switch (*) {

. case (0: usbpn probe(*,*,*);break;
. case 1: usbpn open(*,*);break;

. }

. }

. usbpn exit () ;

° } 75/ 115

I SP m Institute for System Programming
of the Russian Academy of Sciences

Driver Environment Model (2)

o Order limitation

« open() after probe(), but before
remove()

« Implicit limitations
« read() only if open() succeed
« and it is specific for each class of drivers

76 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Model Checking and Linux Kernel

« Reachability problem entry

point %
C>

(x=>y) \x>y)

e D
(> e By

Iz <0) z<0) I(z < Q) (z < 0)

(oS ey (@@ (o> Camd>

error location
77/ 115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Instrumentation
set URBS = empty;
« intf(inty) int f(int y)
* |
. struct urb *x: struct urb *x;
~ X = usb_alloc_urb();
usb_alloc_urb(0,GFP_KERNE ™= °
L): assert(contains(URBS, x));
usb_free_urb(x);
) remove(URBS, urb);
returny;
« usb_free urb(x); }
. _ /| after module exit
}retu ny; assert(is_empty(URBYS));

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Model Checking and Linux Kernel

« Reachability problem entry
point T%
Cu

(x=>y) \x>y)

e D
(> e By

Iz <0) z<0) I(z < Q) (z < 0)

(oS ey (@@ (o> Camd>

error location
E

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Error Trace Visualizer

Rule: Mutex lock/unlock

Error trace Source code
¥ Function bodies | & Blocks | Others... carl917e.h main.c.common.c wlan.h rcupdate.h
3182 LDV_IN _INTERRUPT = 1. 21 1026 static imt carl9170 op_set key(struct ieee80211 hw *hw, enum set_key ci™
3191 +ldv_initialize FOREACH(); 1027 struct ieee80211 vif *vif,
195 tmp__ & = nondet_int() { /* The function bedy|[| 1028 struct iEEESlel_StB ¥5tg
3195 assert(tmp__38 != 0): 1029 struct ieee80211_key_conf *key)
198 tmp 7 = nondet_int() { /* The Ffunction body 1030 { - -
3200 assert(tmp__7 != 0): 1031 struct ar9l70 *ar = hw->priv;
3280 assert(tmp___ 7 != 1}; 1032 int err =0, 1. I
3360 assert(tmp___7 != 2); 1033 uB ktype: :
3440 assert(tmp__ 7 != 3); 1034
3520 assert(tmp__7 E= 4); 1035 if (ar->disable_offload || !wif)
3000 assert(tmp__7 != 5): 1036 return -EOPNOTSUPP;
680 assert(tmp__ 7 != 6); 1037
760 assert(tmp__ 7 1= 7); 1038 .
3840 assert(tmp__7 != 8); 1038 * We have to fall back to software encryption, whenever
3920 assert(tmp__ 7 != 9); 1040 ¥ the user choose to narticipates in an TASS oF is conpected
4000 assert(tmp__7 != 10); 2| 1@4a1 ¢ fo more then ene network.
4080 assert(tmp__7 == 11); el «0
4130 -carl9170_op_set_key(var_groupl /* hv 1043 ¥ This 1s very unfortunate, because some machines cannot handle
{ . 1044 ¥ the high througput speed 1n 882, 11n networks
1631 -ar = ¥(hw).priv; 1045 ¥ ' '
err = 0; 1046
1835 assert(*(ar) .disable_offload == 0); JIBa7 if ('is_main vif(ar, vif))
1035 assert(vif !'= 0); 1048 _gntn_err softw:
1047 +tmp___ 7 = is main vif(ar /» ar »/, ¥ 1049 -
1047 assert(tmp__ 7 == 0); 1050 .
assert(*(ar).rx_software_decryption 1051 ¥ While the hardware supports *catch-all* key, for offloading
1163 +mutex_unlock_mutex(&(ar) ->mutex 1052 aroup-kev en-/de-crvotion. The wav of how the hardware
} L 1853 t decides which keyId maps to which key, remeins a mystery -
4) 1psa | b
(el w] [»] |[<] I [>]

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Bugs Found (230 patches already applied)

.. Problems in Linux Kemel

This section contains information about problems in Linux kKernel found within Linux Driver Verification program.

MNo. Type Brief Added on Accepted Status
L0212 Deadlock nfit: acpi_nfit_notify(): Do not leave device 2015-12-11 https://Ikml.org/lkmif2015 Fixed in
locked f12/11/781 kernel
commit 4.4-rch
L0211 |Crash UsSB: whci-hcd: no check for dma mapping 2015-12-01 http://linuxtesting.org Fixed in
error Jpipermail/ldv-project/2015- kernel
Movember/000558.htmil 4.4-rch
commit
L0210 Crash vmxnet3: fix checks for dma mapping errors 2015-11-28 https://Ikml.org/lkmif2015 Fixed in
f11/27/498 kernel
commit 4.4-rcd
LOZ209 Crash sound: fix check for error condition of 2015-11-07 https://Ikml.org/lkmlf2015 Fixed in
register_chrdewv() J11/6/914 kernel
commit 4.4-rcl
LO208 Crash mcb: Do not return zero on error path in 2015-10-28 https://Ikml.org/lkmif2015 Fixed in
mcb_pci_probe() f10/17/238 kernel
commit 4.4-rcl
LO207 |Crash staging: r8188eu: _enter_critical_mutex() 2015-10-28 https://www.spinics.net/lists Fixed in
error handling Jkernelfmsg2094451.html kermel
commit 4.4-rcl
L0206 Deadlock usb: gadget: pch-udc: fix deadlock in pch-udc 2015-09-18 https://Ikml.org/lkmlf2015 Fixed in
f9/28f256 kernel
commit 4.4-rcl
LOZ20S |Leak mcb: leaks im mcb_pci_probe() 2015-09-16 https://Ikml.org/lkmif2015 Fixed in

J7/8/1041 kernel

P - T . T

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Deductive Verification

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

State of the Art. Methods and Tools.
Deductive Verification
e Approaches:

— Design and verify an ideal “perfect” OS
— Verify a critical component of real-life OS
e Gold practices
e L4 Kernel Verification
- Gerwin Klein. Operating System Verification — An Overview. 2009

e seld

- Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai
Engelhardt. seL4: Formal Verification of an Operating-System Kernel

e Verisoft OS

- HillebrandMA, PaulWJ. On the architecture of system verification environments. 2008.
e Verisoft + Microsoft Research — Pike OS, Hyper-V verification

- C. Baumann, B.Beckert, et al. Ingredients of Operating System Correctness. Lessons Learned in the Formal Verification of
PikeOS

e Problems

— Tools Iimitations and lack of module specifications, no frozen interfaces in Linux
Kerne

e Tools
— Many but no commercial or common used tool 83/ 115

I SP m Institute for System Programming
of the Russian Academy of Sciences

Astraver Project HCZNNEZY

« Deductive Verification of Linux Security Module
« Joint project with NPO RusBITech
» Formal security model MROSL-DP

» Assumptions

o Linux kernel core conforms with its specifications

. It is not target to prove

» Code under verification
« Codeis hardware independent
« Verification unfriendly

84 /115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

MROSL DP

« Operating system access control model
« Hierarchical Role-Based Access Control (RBAC)
« Mandatory Access Control (MAC)
» Mandatory Integrity Control (MIC)

» Implemented as Linux Security Module (LSM)
for Astra Linux

« ~150 pages in mathematical notation

85/115

SP Institute for System Programming

of the Russian Academy of Sciences

LSM Verification Project

LSM stands for Linux Security Module

int pdp_permission(const PDP_0* s, const PDP_0* o, int mode)

if(o->type & PDP_TYPE_EHOLE) return 0;

oBr G | close Preview if (mode & R_OK) {
- if((s->lev < o->lev) || ((s->cat & o->cat) != o-»>cat)) return -1;
}
if (mode & W_O0K) {
if((s->lev » o->lev) || (s-rilev < o-»ilev) || ((s->cat & o-»cat) != s-»cat)) return -1;

}

if (mode & X_0K) {

if((s->lev < o->lev) || ((s->cat & o->cat) != o->cat)) return -1;
} mask &= (MAY_READ |MAY_WRITE|MAY_EXEC|MAY_APPEND) ;
task_role = list_entry(next_task_role, struct role, list);
return inode_role = (struct inode_rback*) list_entry(next_inode_role, struct role, list);
while(next_task_role != task_roles_list)
{
while(next_inode_role != inode_roles_list)
{

if(inode_role->role_seed > task_role->role_seed)

next_inode_role = next_inode_role->next;
inode_role = (struct inode_rback®) list_entry(next_inode_role, struct role, list);
continue;

if(task_role->role_seed == inode_role->role_seed)

return ret;
next_inode_role = next_inode_role->next;
inode_role = (struct inode_rback') list_entry(next_inode_role, struct role, list);
continue;

if(inode_role->role_seed < task_role->role_seed)

break;
return ret;
}
next_task_role = next_task_role->next;
task_role = list_entry(next_task_role, struct role, list);
+
return ret;

Security requirements in math Implementation of LSM in Linux kernel
notation (MROSL DP model

integrates of RBAC, MIC and, MAC) 86 / 115

Institute for System Programming

of the Russian Academy of Sciences

From Rigorous to Formal Security Model
Requirements

rename_entity(x, xX’, y, name, z)
B -
x,x € 5,y,ze E,ye Hegz), name € NAME \ {*”}, 5 =85,
(x, z, write;) € A, [ecnu shared_container(z) = true, E’ =E,
TO cyujecTByeT r € R U AR Takas, 4T0 (X, r, read,) € AP‘?" = APA,
AAu (y, own,) € PA(r)], [m6o () = f(x), ecnn | L ~ PA;

Event-B - DModel/DynamicPart.bum - Rodin PlatForm
ch Project Run ProB BM

CCR(y) = false um CCRI(y) = false, To (x,
entities_admin_role, read,) € AA)), mibo f(MlS

ion Studio Wi

Edit

Navigate

L] il v =k . hd 2 v hd "l
«iJ (X, downgrade_admin_role, read,) € AA], © & %~ |s - @ Ff | @ Events|
., % . PR . | . = = .- =
is(x), Ieim i(z) = I_hlgh, TO (X°, fs(X)_I_EHH @ DynamicPart &2 . =] AbstactModel | 2 StaticPart = -
. A.'... o S u
write,) € A] v, b . as
L] event rename entity n
any session oldName newName container @ntity
where .
@grdl sessioneCurrentSessions -
~ @grd2 oldNameENames A newNametENames m
'.. @grd3 containereCurrentContainers V
Yeg entityEcurrentEntities
oldNamewentityEContainerContent(container)
6 newNamegdom(ContainerContent(container))
container-WriteAcSessionAccesses(session)
Shared({entity)=TRUE
- (3r-recurrentRoles A entity-OwneRoleRights(r)
A r=ReadAESessionAdmAccesses(session))
@grd9 ((EntityCnfLevel(entity)=SessionCnfLevel(session)
A EntityCnfCats(entity)=SessionCnfCats(session)
n ((Ccr(entity)=FALSE v Ccri{entity)=FALSE)
- EntitiesAR~ReadAcSessionAdmAccesses(session)))
v (SessionCnfLevel(session)=EntityCnfLevel(entity)
' A EntityCnfCats(entity)cSessionCnfCats(session)
A DowngradeAR~ReadAcSessionAdmAccesses (session)))
@grdl6 SessionIntegrity(session)zEntityIntegrity(entity)
then
@actl ContainerContent = ContainerContent 3
{container~((ContainerContent (container)‘\{oldNamerentity})u{newNamerentity})}
end
- = BB a8 W

IS RAS

of the Russian Academ

Institute for System Programming

y of Sciences

Example: access_write(x, x’, y) vs. Implementation

X, X" €3, """""'llll------------.-.l::::
y e EL{-R-HAR-IIIII.II.-II-III-II-II--I

cymectyeT I € R U AR: (x, r, read,) € AA, ,*

Yo, "‘ it (mode & W_OK) {
'... ‘$ if((s-»>lev > o-»lev) || (s-»ilev < o-»ilev) || ((s-»cat & o-»cat) != s-»cat)) return -1;
I} *
[CCJ'II/IyEE,TO '.,. ‘t‘ ! “‘v ...-...----I>
oY : LS
4 u m afpeted® ®5T0k) {
* .-i l""'--- “’ if((s-»lev < o-»lev) || ((s-»>cat & o-»>cat) != o-»>cat)) return -1;
io(Y) < i5(X) LI NS R
> smuns® Py L]
elY s mmss R TSR e
* return 0;

u (6o (execute_cgma“l%er(x, y) :‘t‘rue‘"‘
U, ecim y € E:HOLE, T‘qf;(S(\)‘S f.(y),
unaue f,(y) = f,(x)),e**"

6o (x, downgrade_admin_role, read,) € AA),

u (y, write,) € PA(r)],

[ecniuy € R U AR, o (y,"Write:) e ARAK),
i.(y) <iy(x), Constraint,,(AA”) = true,

(nnst e € Jy[imbo (X, e, read,) € A, mubo (x, e,
write,) € A), (6o f(y) = f(x),

6o (x, downgrade_admin_role, read,) € AA)],
[ecmu (y € E m i (y) = i_high) umm

(y e RUAR ui(y) =i_high),

To (X’, f(x)_i_entity, write,) € A]

A A
. .
. v,

L e i m e mss onWompet PDP_0* s,
L L

Ecln%t-PpP-_ﬂV, int mode)

llllll--.---.
if(o->type & PDP_TYPE_EHOLE) return O;
Q’(mode & R_OK) {

* 7

3 if((s-»lev < o->lev) ||

}

((s-»cat & o-»cat) !'= o-»>cat)) return -1;

mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND) ;
task_role = list_entry(next_task_role, struct role,

&
'n...

list);

(0 == ret)
return ret;
next_inode_role = next_inode_role->next;
inode_role = (struct inode_rback*) list_entry(next_inode_role, struct
continue;

if(inode_role->role_seed < task_role-»role_seed)
break;
return ret;

next_task_role = next_task_role-»next;
task_role = list_entry(next task_role, struct role, list);
}

return ret;

inode_role = (struct inode_rback*) list_entry(next_inode_role, struct role, list);
while(next_task_role != task_roles_list)
While(next_inode_role != inode_roles_list)
{
if(inode_role->role_seed > task_role-»role_seed)
{
next_inode_role = next_inode_role->next;
inode_role = (struct inode_rback®) 1list_entry(next_inode_role, struct
continue;
if(task_role->role_seed == inode_role->role_seed)
{
..-lll.> ret = rback_may_access (inode_role->role_access, mask);

role,

role,

list);

list);

88 /115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

LSM Verification Project

LSM stands for Linux Security Module

Abstract interfaces to
implementation interfaces

N Y

Model in math
notation Formal model
(semiformal)

Semiformal to Formal

LSM specsin
ACSL

Abstract model verification LSM implementation
verification

LSM
implementation
in C

89 /115

SP Institute for System Programming

of the Russian Academy of Sciences

Verification Tool Chain

Deductive verification of MROSL-DP model

MROSL-DP model in math notation .

access_read(x, X', y) e e e ot — L]

@ w v [VErTRCCUTaTSsEens § oSCuTITENe £ BT+ @ oynamicpart oo
(s ol * Currer

: s AroCorrootBy Conidantialt
V5.0 (sECUrrantSoessiens A oEGurrantEntities) A l = Curren

x, X €85,y€ EuURUAR, cywectsyetr € RUAR: (x,r,read,) € AA, | §' = 5, E' = E, APA’ = APA, PA’ = PA,

= (o domiAccessesS(2) s _
2 esA celByCar 1y ——
Vs, {=ECurraniSassiona a oECurrentEntities) 1 = EnttyConfdanta,
> @ Oynamichare = cantentss
- v

[ecnu y € E, 10 ly, read,) € PA[r) u nubo (execute_container(x, y) = | user = user, H¢' = Hg, F' = F,

true u foly) < fi(x)), nw6o (x, downgrade_admin_role, read,) € AA], | ecrmy € E, 10 [A"= A w {{x, y, read,)},

ovents.
event INITIALISATION
then

lecm y € R U AR, 1o [y, read) € APA(, ily) < i(x), | A4'=AA], R
:

Rodin (Event-B)

ConstraintaalAA’) = true, (ana e € ly[nnbo (x, e, read,) € A, nnbo (x, | ecmy € R AR, 10 i

e, write)) € A), (nu6o fly) < fi{x), nu6o (x, downgrade_admin_role, | [AA’= AA L {{x, y, read,)}, A’ = A] amect i -

s st
niily ConfidentialityS._st
ritys_st

read,) € AA)],

= S oeeionCoonanotiouns ot =
K il
[ecan y € R AR widy) = i_high, 1o (X', f.(x)_i_entity, write;) € A] e =0 hsumeee =

Brune g g e e

v |1 [oesipion e L e e L
e s P FI S
BOBSRNNEREE
. 5 * + =:e:| e | s NLNPL
1T static int @ccess_read(Struct task_struct *sSUbject,struct inode *emtity)
zZE{
3 Struct task_security *subject_security:
4 struct inode_security *entity security:
3 int ret = -BACCESS O /%@ requires \valid(s) A \valid(e); parsec.c
s o' requires 108
7 Subject_security = get_task_security(subject) {lrsadbitiensk v write bitimat) v enec_bittmask)] v i
2 entity_security = get_entity_securitwyientity): O terminates ytrue; b pehay
: s _ 3 © assigns \nsthing; [
10 if(isubject_security || lentity security) O B piximasty v xec_bitimashl1 v write_bicimskl | 153 Somels
11 return ret; assunes ~allouis, o, mask): are sl
12 o entures DENY: \risuit = -1 L A——
13 iT(is_roleentity)) //fpooepser SOSKONHOCTS AOMHEHIS A0CTYIE HZ HUTeHHE K CHEHOCTH O benavior ALLow =
Tal ¢ o o33unes (r0a exee_ bit(naskl) v write bit(mask); | 1801
15 ret = can_access(&subject_security->roles, &entity_security->list, MAY_READ, ©); Scrpe.. | (None) o enzures ALLON 15 e
16 itiret 1= 9) why (ice) B ebavior DERALLT 1 .
17 ret = can_access({&subject _security->admin_roles, &entity security->list, MAY _WRITE, &) ok [)Trace [Proof assunes (~read pit(nask) A -exec bit(mask)) & write bit(nask): |20 "
b Sfirer - oy ; o Sntures ALLoW: \resdit = 0; 1o
s | : e e O completn benaviors DEFAULT, ALLOW, OENY: 15 rama-
20 ret = execute_container(subject, entity): Tmeout (103 Process [+ : [, [147010T behaviors DEFAILT, ALLM, et 190 /4
by itiret 1o & 0% mac_Tile_permissioniparses_muc_t const *s, parsec_mac_tabel_t cor 133 y
22 ret = is_downgrade_admin_role(&subject_security->admin_roles. MAY_READ): o = if o
3 F ' iy —— 122
2a b y 4 e hype o (umsignes snvnes)) =
25 else //MpOBEpAeNn SOSMONHOCTS MOMYNEHHA ADCTYITE HE STEMHHME I QO HTH SINAHACTIRSTHEHOS [0 G < fmerme ! 159
26 & { e 200
27 ret = can_admin_sccessigsubject_security-radmin_roles. &entity_security->1ist. MAY_READ): ey oy 201
28 } Sem—— B 203
29 return ret: e o Tae t =)
LAND: /* internal */ s
Fatlaw focus e " , 207
i 3F (1 {0 stype & (Wasigned int)oxe1)) { = s

Part of LSM in Astra Linux i . . .
Deductive verification LSM in Astra Linux

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

LSM Verification Project

LSM stands for Linux Security Module

Abstract interfaces to
implementation interfaces

Y N

Semiformal to Formal

Model in math Model in Event-B LSM specsin

notation ACSL

Frama-C

Rodin toolset (Why2, Jessie)

_

Abstract model verification LSM implementation
verification

/

91/115

I SP Institute for System Programming
of the Russian Academy of Sciences

Deductive Verification in C (*)

Already applied for
Open source Memory model OS low-level code Usability

verification
VCC — + + —
Why3 + + — +
Frama-C WP + $ —_ +
VeriFast — + + —
C-to-Isabelle + + + +

(*) The research on deductive verification tools development was carried out with funding
from the Ministry of Education and Science of Russia(the project unique identifier is
RFMEFI60414X0051)

Institute for System Programming) :
ISP m of the Russian Academy of Sciences C-program with

ACSL annotations

Frama-C-Jessie-Why3 ‘oraciGR

CIL with annotations

Jessie Plug-In \

Program in Jessie

Jessie Engine

WIVE Why?2 Why3
Verification Results Generator Generator /
Database
/ Program in WhyML
Why3 IDE

Verification Condition Il‘ Verific_ation conditions Why3 VCG
Why3 Transformations I Bl ¢

\ Formula Encoder Theorem Encoder J

SMT-LIB, etc. Theorems Coq, PVS, Mizar

93/115

I SP m Institute for System Programming
of the Russian Academy of Sciences

Problems with the tools

« Memory model limitations

« Arithmetics with pointers to fields of structures
(container_of)

. Prefix structure casts
« Reinterpret casts

» Integer model problems
« Limited code support

» Functional pointers
« String literals

« Scalability problems
« Usability problems 94 /115

M Bxosaume (22111)-= X\

D Ibis Faris Avenue D'Tta. \ E Venue and Accommod: 3 \ m Google Maps

RUSSIAN

o C [linuxtesting.org/18-02-2015

Login | Registration

Institute for System Programming of the Russian Academy of Sciences

m About Center
Our Team
MNews
Partners
Contacts

p Linux Kernel Space
Verification

v LSB Infrastructure

b Testing Technologies
p Tests and Frameworks
v Portability Tools

v Contribution
e Publications
» Events

o

o

o

o

vl 2lliile & @&

L VERIFICATION CENTER linux

OF THE OPERATING SYSTEM

i 18-Feb-2015: The first public release of Astraver Toolset

Submitted by Mikhail Mandrykin on 18/02/2015 - 14:3C

We are happy to announce the first public release of Astraver Toolset 1.0 that is built on top of the 'Frama-C + Jessie +
Why2 IDE' deductive verification tocolchain. The toolchain was adapted, so it can be used to specify and prove properties of
Linux kernel code. The most of our medifications go to the Jessie plugin, while the Frama-C front-end and the Why2 platform
have got just minor fixes or improvements., Some of our medifications were already applied upstream, while the rest is available
in our public repositories.

The most important medifications are described below.
C Language Support

« Low-level reinterpret type casts between pointers to integral types. This feature reguired modification of the Jessie
memory model as described in our paper "Extended High-Level C-Compatible Memory Model with Limited Low-Level
Pointer Cast Support for Jessie Intermediate Language”. The overall idea can be summarized as an ability to do certain
ghost re-allocations of memory blocks in explicitly specified points in order to transform arrays of allocated objects
(structures) from one type to ancther. WARNING. Discriminated unions support is not vet fully adapted to the modified
memory model.

« Prefix type casts between outer structures and their corresponding first substructures (through field inlining and structure
inheritance relaticn in Jessie).

« Kernel memory (de)allocating functions kmallec()/ kzalloc(), kfree().

« Builtin C99 __ Bool type.

« Standard library functions memcpy(), memmove(), memcmp() and memset(). The support for these functions is

implemented through type-based specialization of several pre-defined pattern specifications. (*}
s+ Function pointers (through exhaustive may-aliases checking). (*}
s+ Variadic functions (through additional array argument). {*)
s Inline assembly (through undefined function calls). (*)

(*)The main purpose of implementing support for these features was the ability to use the tools on our target code
without the need for its significant preliminary modification. As a result the support is not complete enough to be

== = Ty Pl e I

I SP m Institute for System Programming
of the Russian Academy of Sciences

LSM Verification Project

LSM stands for Linux Security Module

Abstract interfaces to

Semiformal to Formal : o
implementation interfaces

Model in math Model in Event-B LSM specsin

notation ACSL

Handmade > 10 pages

Comments > 100 pages Event-B ~ 3000 C Source code ~ 5 Kline

I' 1 1
nes ACSL code > 15 Kline

Frama-C
(Why2, Jessie)

Rodin toolset

Abstract model verification LSM implementation

verification
96/ 115

ISPLIYY oo meacoms of soonces
Hierarchical MROSL DP Model
(decomposition of Event-B model)

1. RBAC — Role-based access
control
2. Model 1. with MAC
(Mandatory access control)

3.1. Model 2 with MAC and 3.2. Model 2 for hypervisors |

information flow in memory } .)
control

4.1. Model 3.1 with MAC and 4.2. Model 3.1 for distributed |

___________ systems_ _ _________s

information flow in time control

97 /115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

LSM Verification Conclusion

» InfoSec requirements are essentially non-
functional, they are not decomposed as the
functional requirements and

» the direct correspondence between the formal
security model entities implementation entities of

such a complex system as the operating system
(?) can not be built

« Whattodo?

98 /115

ISP m Institute for System Programming
of the Russian Academy of Sciences

Final Discussion

I SP Institute for System Programming
of the Russian Academy of Sciences

OS Scale

_ Libraries — ~1 million functions, ~ 10° KLOC
e Libraries + Kernel

Kernel

e Monolithic Kernel
Core kernel - ~ 5-103 KLOC

< Drivers - ~ 5-100 KLOC

e Microkernel

~_ Microkernel modules >-200 KLOC

100/ 115

IS RAS

Institute for System Programming
of the Russian Academy of Sciences

OS Scale - Verification Approaches

A
Libraries + Kernel ~ 10® KLOC —

Monolithic Kernel ~ 104 KLOC -
(Linux, Windows)

Hypervisors (Hyper-V)< 300 KLOC —
Drivers/modules < 100 KLOC -

Microkernel < 10 KLOC —

(L4, PikeOS)

Testing

Software Model Checking

Deductive Verification

—

—

101/ 115

I SP Institute for System Programming
of the Russian Academy of Sciences

Verification Approaches and
Development Processes

all kinds #\
of bugs

uality Deg_juctive

test suite verification

Static Static
1 kind i
bugs test analysis verification
>

in 1 execution in all executions
Lightweight Heavyweight
development development
processes processes

102 / 115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

What is “Heavyweight processes”?

ARP 4754A: Interactions of Requirements,
Safety, and Development

1 1] = . u
1 1 [] i 1
1 AIRCRAFT 1 SYSTEM i ITEM H H 1
!| REQUIREMENTS |!| REQUIREMENTS |! | REQUIREMENTS |'| ITEM DESIGN i f
1| IDENTIFICATION IDENTIFICATION 4~ IDENTIFICATION ['l']
! 412l 41584 417845]8 4528463 = =l
1 [}
: 1 ;
] I H !
' H 1
i PASA | : !
1 1 H !
: : '
i Aircraft CCA | i
1 1)
H vagaton of | :
i requirements & | 1
I e next nignest 1 1
1 el !
L] 1 L)
1 1 '
1 1 i !
' Il systemcca |! i
' Top Down ! H :
1] Vallastion of '
1 Safety requiremeants a) 1 1
| Requirements tre rext ignest | i !
| Development& | level i '
1 Vaidation i ! ! H
i 1 H System FTA i 1]
1 1 1 1 1 1
' : i[system cma ! :
: i 1 i System FMEA/ 1 :
! - | i FMES : i
1 1 [Vaidationo 1 I
1 1 requremenis at § 1 [
! ! the nex nighes: | ! i
[1 1 — ! ! !
! H 1 1| Software Design 1 H

1 i 1 !
1 1 i i H i
1 ! 1 H 1 H
H . H 1 | Hardware Design |: ! 1
, : :
1 '

103 / 115

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Verification Approaches and
Development Processes

all kinds M\
of bugs
One
1 kind
bugs test

Hi ﬁality Deg_juctive
test suite verification
Static Static
analysis verification

in 1 execution

Lightweight
development
processes

>

in all executions

Heavyweight
development
processes

104 / 115

I SP Institute for System Programming
of the Russian Academy of Sciences

Verification Approaches and
Development Processes

all kinds A\
of bugs . .
ﬁalltveg_juctive
t suiteerification
tatic Static
1 kind -
bugs test analysis verification
>
in 1 execution in all executions
Lightweight Heavyweight
development development
processes processes

105/ 115

I SP Institute for System Programming
of the Russian Academy of Sciences

Conclusion on Practical Verification
g 1

Trivial conclusions:
e No silver bullet

e We are seeing remarkable progress in the
use of formal and other sophisticated
software analysis techniques.

Other ones:

e However deep testing and verification
require a deep knowledge of the system
under analysis and it is not clear how such
a situation may change in the near future

Frederick P. Brooks Jr.

e The axiom that testing should be done by
an independent testers group in the case
of very complex systems is not valid.

106 /115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Conclusion on Practical Verification

e Dines Bjgrner : Each development
team must include at least one
mathematicion

e |n practice, Intel and Microsoft
have integrated development team
and testers

e sel4 & PikeOS verification
experience shows that such
projects joint designers and
mathematicians-verifiers.

Dines Bjgrner

107/ 115

I SP mEE Institute for System Programming
of the Russian Academy of Sciences

Conclusion OS Information Security

Trivial conclusion:

o Safety & security strongly intersect, one
without the other can not be provided

e Deep verification easier to perform for a
small and simple OS than for large and
complex one.

Other ones:

e Programmers try to ensure safety without
linking the design decisions with security
issues - to some extent it is possible.

e But sometimes we can not follow this way,
for example, we can not pass certification
process.

e A high level of confidence requires
heavyweight processes, in particular, careful
work with the requirements specification -
this is the most difficult moment - pointed
out by Alan Perlis 108/115

I SP Institute for System Programming
of the Russian Academy of Sciences

Conclusion OS Information Security

This is not surprising since computers
can compute so much more than we

yet know how to specify

— flan Perdis —

heavyweight processes, in particular, careful
work with the requirements specification -
this is the most difficult moment - pointed

out by Alan Perlis 109 /115

I SP Institute for System Programming
of the Russian Academy of Sciences

Conclusion OS Information Security

* We have to establish the problem of
conformance of security model with
protection mechanisms of a trusted
operating system informally (or formally in
part).

* Shura-Bura noted that the transition from \
the informal to the formal is essentially T\ e
informal. , , M.P.Shura-Bura

e This thesis leads to the conclusion that in
addition to the verification tasks we have

establish and solve the validation task.

e Open problem: How to combine and reuse the
techniques, tools, and verification&validation
artifacts?

110/ 115

I SP m Institute for System Programming
of the Russian Academy of Sciences

Acknowledgements:
* TAROT organizers
* Antoine Rollet

* Alexey Khoroshilov, Victor Kuliamin,
Petr Devyanin

* Sponsors and industrial partners

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

Welcome to SYRCoSE-2017 in Kazan(Innopolis)
May 29-31, 2017
http://syrcose.ispras.ru

I SP m Institute for System Programming
of the Russian Academy of Sciences

Read More. ..

— http://www.ispras.ru/groups/se/
e Publications
— http://www.ispras.ru/groups/se/publications.php

e Open projects: UniTESK, OLVER, LDV, BLAST, CPAchecker,

MASIW, Requality, Frama-C/Why3/Jessie
— http://unitesk.ru

— http://forge.ispras.ru

— http://hardware.ispras.ru

— http://linuxtesting.org

— http://www.linuxbase.org/navigator/commons/welcome.php
— http://www.ispras.ru/technologies/

— http://sdat.ispras.ru/

— http://syrcose.ispras.ru/

— http://www.isprasopen.ru/en/conf.html

114 / 115

http://ispras.ru/ru/se

ISP mEE Institute for System Programming
of the Russian Academy of Sciences

