
Testing and Verification of Operating
Systems and Information Security Issues

Prof. Alexander K. Petrenko,

petrenko@ispras.ru

12th TAROT Summer School on Software Testing, Verification & Validation

Paris, July, 2016

 ISP RAS belongs to the Division

of Mathematical Sciences of the

RAS.

 The Institute employs more than

200 highly qualified researchers

and software engineers, including

12 doctors of science and 45

philosophy doctors.

 Many employees of the Institute

also work as professors in leading

Moscow universities.

Institute for System Programming

2 / 115

 SE Department staff:

 over 40 researchers and engineers, including 3 Doctors of Sc. and 13 Ph.D.

 Major partners and customers

 Foreign partners: Microsoft Research, Intel Labs, Nokia, Google, ETRI,

EADS Telecom, University of Passau, Fraunhofer FOKUS

 Russian partners: NIISI RAS, GosNIIAS, VimpelCom, MCST(Elbrus)

 International organizations: ISO/JTC 1, ETSI, The Linux Foundation

Software Engineering Department

3 / 115

ISPRAS Research Model = ?

ISPRAS Research Model = Industrial Research

4 / 115

Application Domains

5 / 115

 Verification techniques and tools (testing, software model checking,

deductive verification)

 Trusted operating systems (Linux family, ARINC-653 Real-Time OS)

 Tool chains for critical software life cycle support

 Requirements management tools

 System modeling (AADL), simulation, risk analysis

 Cyber-physical system integration (avionics)

 Telecom and operating systems API/ABI standards

 Hardware designs testing

 Model Based Testing foundations

SE Department R&D Domains

6 / 115

1. What is the “Operating System”?

2. Spectrum of OS testing and verification methods

3. State of the Art and ISPRAS’s experience

4. Information security specifics and OS verification

Agenda

7 / 115

OS Verification Challenge

• Operating System is a base of software platform. Reliability and
security of OS is ultimate prerequisite of information technologies
quality

• Critical software/systems need certification. OS certification is
necessary part of certification process

• IT domains requiring reliable, secure, trusted OSs:

– Servers and work stations

– Data centers

– Avionics, other computing intensive systems

– Mobile devices

– SCADA, etc.

8 / 115

OS Architecture

• Libraries + Kernel

• Monolithic Kernel

• Microkernel

Libraries

Kernel

Core kernel

Drivers

Microkernel modules
Microkernel modules

Microkernel modules

9 / 115

OS Architecture. Scale

• Libraries + Kernel

• Monolithic Kernel

• Microkernel

Libraries – ~1 million functions, ~ 10
5
 KLOC

Kernel

Core kernel - ~ 5∙10
3
 KLOC

Drivers

Microkernel modules
Microkernel modules

Microkernel modules

Drivers - ~ 5-100 KLOC

5-200 KLOC

10 / 115

Operating Systems Structure

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space
Kernel

Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel
Kernel

Threads
Device Drivers

Operating
system

Platform

Spectrum of Testing/Verification
Approaches

• Testing (dynamic analysis, monitoring, run-time
verification, fault injection)

• Static analysis (lightweight analysis, software model
checking)

• Static/dynamic analysis (DART, concolic testing)

• Deductive verification

12 / 115

Spectrum of Testing/Verification
Approaches vs. Verification Aspects

Testing/Verification aspects:

• Functionality / Conformance / Reliability / Security / . . .

• Usability testing

• Performance modeling and testing

• . . .

13 / 115

• Testing (dynamic analysis, monitoring, run-time verification)

• Static analysis (lightweight analysis, software model checking)

• Static/dynamic analysis (DART, concolic testing)

• Deductive verification

Static Analysis Dynamic Analysis

Static Analysis Dynamic Analysis

+ All paths at once – One path only

Static Analysis Dynamic Analysis

+ All paths at once – One path only

+ Hardware, test data and test
environment is not required

– Hardware, test data and test
environment is required

Static Analysis Dynamic Analysis

+ All paths at once – One path only

+ Hardware, test data and test
environment is not required

– Hardware, test data and test
environment is required

– There are false positives + Almost no false positives

Static Analysis Dynamic Analysis

+ All paths at once – One path only

+ Hardware, test data and test
environment is not required

– Hardware, test data and test
environment is required

– There are false positives + Almost no false positives

– Checks for predefined set of
bugs only

+ The only way to show the
code actually works

18 / 115

State of the Art.
Methods and Tools. Testing

• 3 views on OS :
– OS as API for applications

– OS is an OS kernel

– OS is a part of software/hardware platform

• OS as API for applications
• Problems

– Huge set of APIs (over 1 million functions)

– Lack of specifications (poor quality of specifications)

19 / 115

State of the Art.

Methods and Tools. Testing

• 3 views on OS:
– OS as API for applications

– OS is an OS kernel

– OS is a part of software/hardware platform

• OS as API for applications.
• Problems

– Huge set of APIs (over 1 million functions)

– Lack of specifications (poor quality of specifications)

• Methods

– Traditional (handmade) test suites

– Specification/model based testing

• Specification based testing tools

– ADLT (Sun Microsystem, 1993)

– KVEST (Nortel, ISPRAS, 1994-1999)

– UniTESK/CTESK (ISPRAS, 2000-2007

– SpecExplorer (Microsoft, 2004-2009)

20 / 115

OLVER – Model Based Testing
of Linux Basic Libraries(*)

(*) The project was supported by Russian Ministry of
Education and Science and by The Linux Foundation

OLVER: Open Linux VERification

Linux Standard Base – LSB 3.1

LSB Core ABI

GLIBC

libc libcrypt libdl

libpam libz libncurses

libm libpthread librt libutil

LSB Core 3.1 / ISO 23360

ABI Utilities ELF, RPM, …

LSB C++ LSB Desktop

22 / 115 More 1500 interfaces

OLVER Process

Test Suite

LSB Requirements

Specifications

Test Scenarios

Tests

CTesK

Automatic

Generator

Test Reports

Testing Quality

Goals
Linux

System

23 / 115

Technology: KVEST (1999)/UniTESK (2002)
Test Oracles

Test

oracle

Specifications

(pre- and

postconditions)

?
System

under

test
Test stimuli

System under test is

a black box that

provides API

(functions,

procedures etc.)

• T. J. Ostrand and M. J. Balcer’s “The Category-Partition Method for Specifying and Generating
Functional Tests” (in CACM, 31(6):676–686, June 1988).

• I.Burdonov, A.Kossatchev, A.Petrenko, D.Galter. KVEST: Automated Generation of Test Suites
from Formal Specifications. Proceedings of Formal Method Congress, Toulouse, France, 1999,
LNCS, No. 1708.

• I.Bourdonov, A.Kossatchev, V.Kuliamin, and A.Petrenko. UniTesK Test Suite Architecture. Proc. of
FME 2002. LNCS 2391.

KVEST/UniTesK Workflow

Implementation Specification Model of test

(test scenario) Model of coverage

Test stimuli generator Output analysis

Trace analysis 25 / 115

UniTESK Test Scenario Model

Test

Engine

Test

Scenario

So called “Implicit automata” or

EFSM derived during on-the-fly test scenario

execution.

Implicit automata is an ADT with

2 operations:

- recognise_node_ID () -> ({new, visited} x ID)

- next_call (next_input_stimulus) -> (…)

The test engine step by step builds/explores all

nodes (states) and all available function calls

(transitions).

26 / 115

Requirements Catalogue

27 / 115

{
 pre
 {
 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "Objects are not overlapped", TODO_REQ());

 return true;
 }
 post
 {
 /*The memcpy() function shall copy n bytes from the object
 pointed to by s2 into the object pointed to by s1. */
 REQ("memcpy.01", "s1 contain n bytes from s2", TODO_REQ());

 /* The memcpy() function shall return s1; */
 REQ("memcpy.03", "memcpy() function shall return s1", TODO_REQ());

 return true;
 }
}

memcpy() specification template

28 / 115

specification
VoidTPtr memcpy_spec(CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n)
{
 pre
 {
 /* [Consistency of test suite] */
 REQ("", "Memory pointed to by s1 is available in the context",
 isValidPointer(context,s1));
 REQ("", "Memory pointed to by s2 is available in the context",
 isValidPointer(context,s2));

 /* [Implicit precondition] */
 REQ("", "Memory pointed to by s1 is enough", sizeWMemoryAvailable(s1) >= n
);
 REQ("", "Memory pointed to by s2 is enough", sizeRMemoryAvailable(s2) >= n);

 // If copying takes place between objects that overlap, the behavior is undefined.
 REQ("app.memcpy.02", "Objects are not overlapped",
 !areObjectsOverlapped(s1,n,s2,n));

 return true;
 }

memcpy() precondition

29 / 115

specification
VoidTPtr memcpy_spec(CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n) {
 post

 {
 /*The memcpy() function shall copy n bytes from the object
 pointed to by s2 into the object pointed to by s1. */
 REQ("memcpy.01", "s1 contain n bytes from s2",
 equals(readCByteArray_VoidTPtr(s1,n), @readCByteArray_VoidTPtr(s2,n))

);

 /* [The object pointed to by s2 shall not be changed] */
 REQ("", "s2 shall not be changed",
 equals(readCByteArray_VoidTPtr(s2,n), @readCByteArray_VoidTPtr(s2,n)));

 /* The memcpy() function shall return s1; */
 REQ("memcpy.03", "memcpy() function shall return
s1",equals_VoidTPtr(memcpy_spec,s1));

 /* [Other memory shall not be changed] */
 REQ("", "Other memory shall not be changed",
 equals(readCByteArray_MemoryBlockExceptFor(getTopMemoryBlock(s1), s1, n),
 @readCByteArray_MemoryBlockExceptFor(getTopMemoryBlock(s1), s1, n)));
 return true;

 }

memcpy() postcondition

Requirements Traceability

Failure report: requirement {mvcur.04} failed
31 / 115

Requirements Coverage Report

32 / 115

Requirements Coverage Report (2)

33 / 115

OLVER Results

 Requirements catalogue built for LSB and POSIX

 1532 interfaces

 22663 elementary requirements

 97 deficiencies in specification reported

 Formal specifications and tests developed for

 1270 interface (good quality)

 + 260 interfaces (basic quality)

 80+ bugs reported in modern distributions

 OLVER is a part of the official LSB Certification test suite
http://ispras.linuxfoundation.org

34 / 115

http://ispras.linuxfoundation.org/

OLVER Conclusion

 model based testing allows to achieve better
quality using less resources

 maintenance of MBT is cheaper

35 / 115

OLVER Conclusion

 model based testing allows to achieve better
quality using less resources
if you have smart test engineers

 maintenance of MBT is cheaper
if you have smart test engineers

36 / 115

OLVER Conclusion

 model based testing allows to achieve better
quality using less resources
if you have smart test engineers

 maintenance of MBT is cheaper
if you have smart test engineers

 traditional tests are more useful for typical test
engineers and developers

37 / 115

OLVER Conclusion

 model based testing allows to achieve better
quality using less resources
if you have smart test engineers

 maintenance of MBT is cheaper
if you have smart test engineers

 traditional tests are more useful for typical test
engineers and developers

 so, long term efficiency is questionable

 but...
38 / 115

Configuration Testing
Product Line Testing

State of the Art.
Methods and Tools. Testing

• 3 views on OS:
– OS as API for applications

– OS is an OS kernel

– OS is a part of software/hardware platform

• OS is a part of software/hardware platform
• Problems

– Huge number of configurations

– Unavailable hardware devices and lack of devices models

• Methods

– Ad-hoc ≡ proprietary know-how

– Systematical reduction of target configurations

 V.V. Kuliamin. Combinatorial generation of software-based OS configurations. The Proceedings of

ISP RAS], 2012.

• Tools

– No commercial or popular tool

• Testing quality

– Not available
40 / 115

Linux Product Line Verification

• University of Waterloo

– Y. Xiong, A. Hubaux, S. She, and K. Czarnecki,
“Generating range fixes for software
configuration,” in Proc. of ICSE, 2012.

• University of Passau

– Sven Apel, Alexander von Rhein, Philipp Wendler,
Armin Größlinger, and Dirk Beyer. Strategies for
Product-Line Verification: Case Studies and
Experiments. In Proc. of ICSE, 2013.

41 / 115

OS Kernel
Testing/Verification

State of the Art.
Methods and Tools. Testing

43 / 115

• 3 views on OS:
– OS as API for applications

– OS is an OS kernel

– OS is a part of software/hardware platform

• OS is a kernel
• Problems

– Event driven multithreading systems

– Lack of specifications (poor quality of specifications, Microsoft Windows is an exclusion)

• Methods

– Run-time verification

– Fault simulation
Linux Kernel Testing (KEDR): http://code.google.com/p/kedr

• Tools

– No commercial or popular tool applicable in kernel mode

• Testing quality

– Average test coverage lower 20%

Run-Time Verification

Sanitizer Tools Family.
Google research group of Konstantin Serebryany(*)

45 / 115

Run-time verification and compile-time code instrumentation.

Tools:

• MemorySanitizer: fast detector of uninitialized memory
use in C++

• AddressSanitizer: A Fast Address Sanity Checker

• Dynamic Race Detection with LLVM Compiler

• ThreadSanitizer – data race detection

• KernelThreadSanitizer – data races in Linux Kernel

(*) http://research.google.com/pubs/KonstantinSerebryany.html

Robustness Testing

Fault Handling Code

 Is not so fun

 Is really hard to keep all details in mind

 Practically is not tested

 Is hard to test even if you want to

 Bugs seldom(never) occurs

=> low pressure to care

47 / 115

Why do we care?

 It beats someone time to time

 Safety critical systems

 Certification authorities

48 / 115

Operating Systems Structure

System
Calls

Special
File Systems

Signals,
Memory updates,
Scheduling,
...

Kernel-space
Kernel

Modules

Kernel Core (mmu, scheduler, IPC)

Hardware

Interrupts, DMA IO Memory/IO Ports

User-space

Applications

System
Libraries

Utilities
System
Services

Kernel
Kernel

Threads
Device Drivers

Operating
system

49 / 115

Run-Time Testing of Fault Handling

 Manually targeted test cases

+ The highest quality

– Expensive to develop and to maintain

– Not scalable

 Random fault injection on top of existing tests

+ Cheap

– Oracle problem

– No any guarantee

– When to finish?

50 / 115

Systematic Approach

 Hypothesis:

 Existing tests lead to more-or-less
deterministic control flow in kernel code

 Idea:

 Execute existing tests and collect all potential
fault points in kernel code

 Systematically enumerate the points and
inject faults there

51 / 115

Fault Injection Implementation

 Based on KEDR framework*

 intercept requests for memory allocation/bio
requests

 to collect information about potential fault
points

 to inject faults

 also used to detect memory/resources leaks

(*) http://linuxtesting.org/project/kedr 52 / 115

KEDR Workflow

http://linuxtesting.org/project/kedr

53 / 115

Systematic vs. Random

• + 2 times more
cost effective

• + Repeatable results

• – Requires more
complex engine

• + Cover double
faults

• – Unpredictable

• – Nondeterministic

54 / 115

Concolic Testing

Concolic Testing

 Concolic = Symbolic + Concrete

 SUT runs in concrete and in symbolic modes

 Symbolic execution is used to collect
conditions and branches of the current path

 Collected data is used to generate new input
data to cover more execution paths

57 / 115

Concolic Tools

58 / 115

S2E for Kernel Testing

 based on KLEE

 uses patched Qemu

 source code is not
required

 supports plugins

(*) https://s2e.epfl.ch/
59 / 115

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider

Monitoring Aspects - - + +- + +-

Kinds of Observable Events

interface events + + +

internal events + + + +

Events Collection

internal + + + + +

external +

embedded

Requirements Specification Specific Plugin Specific Specific

in-place (local, tabular) + + If Dis Dis

formal model (pre/post+invariants,...) + If Co Co

assertions/prohibited events External External External Co Co Co

Events Analysis

online + + +

in-place + + + +

outside +

offline +

Testing Aspects

60 / 115

T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider

Active Aspects +- + - + + -

Target Test Situations Set cfgs Specific

requirements coverage + +

class equivalence coverage +

model coverage (SUT/reqs) +

source code coverage almost +

Test Situations Setup/Set Gen

passive +-

fixed scenario + +

manual +

pre-generated

coverage driven +-

random +-

adapting scenario +

coverage driven +

source code coverage almost +

model/... coverage +

random as option

Test Actions

application interface + + +

HW interface

internal actions + + +

inside + +

outside +

Software Model Checking

State of the Art. Methods and Tools.

Software Model Checking

• Approaches:
– Counterexample guided abstraction refinement (CEGAR) - Edmund Clarke et al.

– Configurable Program Analysis – Dirk Beyer

– Abstract interpretation - Patrick Cousot and Radhia Cousot

– Bounded Model Checking – BMC – Edmund Clarke et al.

• Gold practices
• Microsoft Research (SLAM)

• LDV – Linux Driver Verification

• Problems
– Lack of specs

– Limitations on size and complexity of modules (no more 30-100KLine)

• Tools
– Many but no commercial or popular tool

• Verification quality

63 / 115

SVCOMP‘2012 Results

64 / 115

SVCOMP‘2014 Results

SVCOMP‘2015 Results

66 / 115

LDV: Linux Driver Verification

Commit Analysis(*)

 All patches in stable trees (2.6.35 – 3.0)
for 1 year:

 26 Oct 2010 – 26 Oct 2011

 3101 patches overall

(*) Khoroshilov A.V., Mutilin V.S., Novikov E.M. Analysis of typical faults in Linux operating system drivers.
Proceedings of the Institute for System Programming of RAS, volume 22,
 2012, pp. 349-374. (In Russian)
http://ispras.ru/ru/proceedings/docs/2012/22/isp_22_2012_349.pdf
Raw data: http://linuxtesting.org/downloads/ldv-commits-analysis-2012.zip 68 / 115

http://ispras.ru/ru/proceedings/docs/2012/22/isp_22_2012_349.pdf
http://linuxtesting.org/downloads/ldv-commits-analysis-2012.zip

Commit Analysis

 All patches in stable trees (2.6.35 – 3.0) for 1
year:

 26 Oct 2010 – 26 Oct 2011

 3101 patches overall

Unique commits to drivers
(1503 ~ 50%)

Support of a
new functionality

(321 ~ 20%)

Bug fixes
(1182 ~ 80%)

Commit Analysis

Typical bug fixes
(349 ~ 30%)

Generic bug fixes
(102 ~ 30%)

Fixes of Linux kernel API misuse
(176 ~ 50%)

Fixes of data races,
deadlocks
(71 ~ 20%)

 All patches in stable trees (2.6.35 – 3.0)
for 1 year:

 26 Oct 2010 – 26 Oct 2011

 3101 patches overall

 Taxonomy of Typical Bugs Rule classes Types
Number of
bug fixes

Percents
Cumulative

total
percents

Correct usage of
the Linux kernel

API
(176 ~ 50%)

Alloc/free resources 32 ~18% ~18%

Check parameters 25 ~14% ~32%

Work in atomic context 19 ~11% ~43%

Uninitialized resources 17 ~10% ~53%

Synchronization
primitives in one thread

12 ~7% ~60%

Style 10 ~6% ~65%

Network subsystem 10 ~6% ~71%

USB subsystem 9 ~5% ~76%

Check return values 7 ~4% ~80%

DMA subsystem 4 ~2% ~82%

Core driver model 4 ~2% ~85%

Miscellaneous 27 ~15% 100%

Generic
(102 ~ 30%)

NULL pointer
dereferences

31 ~30% ~30%

Alloc/free memory 24 ~24% ~54%

Syntax 14 ~14% ~68%

Integer overflows 8 ~8% ~76%

Buffer overflows 8 ~8% ~83%

Uninitialized memory 6 ~6% ~89%

Miscellaneous 11 ~11% 100%

Synchronization
(71 ~ 20%)

Races 60 ~85% ~85%

Deadlocks 11 ~15% 100%

Software Model Checking

entry
point

error location

 Reachability problem

72 / 115

Verification Tools World

• int main(int argc,char* argv[])

• {

• ...

• other_func(var);

• ...

• }

void other_func(int v)

{

 ...

 assert(x != NULL);

}

73 / 115

Device Driver World
int usbpn_open(struct net_device *dev) { ... };

int usbpn_close(struct net_device *dev) { ... };

struct net_device_ops usbpn_ops = {

 .ndo_open = usbpn_open, .ndo_stop = usbpn_close

};

int usbpn_probe(struct usb_interface *intf, const struct usb_device_id *id){

 dev->netdev_ops = &usbpn_ops;

 err = register_netdev(dev);

}

void usbpn_disconnect(struct usb_interface *intf){...}

struct usb_driver usbpn_struct = {

 .probe = usbpn_probe, .disconnect = usbpn_disconnect,

};

int __init usbpn_init(void){ return usb_register(&usbpn_struct);}

void __exit usbpn_exit(void){usb_deregister(&usbpn_struct);}

module_init(usbpn_init);

module_exit(usbpn_exit);

Callback interface
procedures registration

No explicit calls to
init/exit procedures

Driver Environment Model

• int main(int argc,char* argv[])

• {

• usbpn_init()

• for(;;) {

• switch(*) {

• case 0: usbpn_probe(*,*,*);break;

• case 1: usbpn_open(*,*);break;

• ...

• }

• }

• usbpn_exit();

• } 75 / 115

Driver Environment Model (2)

 Order limitation

 open() after probe(), but before
remove()

 Implicit limitations

 read() only if open() succeed

 and it is specific for each class of drivers

76 / 115

Model Checking and Linux Kernel

entry
point

error location

 Reachability problem
DONE

77 / 115

Instrumentation

• int f(int y)

• {

• struct urb *x;

• x =

usb_alloc_urb(0,GFP_KERNE

L);

• ...

• usb_free_urb(x);

• return y;

• }

set URBS = empty;

int f(int y)
{
struct urb *x;

 x = usb_alloc_urb();
 add(URBS, urb);
 ...
 assert(contains(URBS, x));
 usb_free_urb(x);
 remove(URBS, urb);

 return y;
}
 …
 // after module exit
 assert(is_empty(URBS));

Model Checking and Linux Kernel

entry
point

error location

 Reachability problem

DONE

DONE

Error Trace Visualizer

Bugs Found (230 patches already applied)

Deductive Verification

State of the Art. Methods and Tools.
Deductive Verification
• Approaches:

– Design and verify an ideal “perfect” OS
– Verify a critical component of real-life OS

• Gold practices
• L4 Kernel Verification

– Gerwin Klein. Operating System Verification — An Overview. 2009

• seL4
– Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai

Engelhardt. seL4: Formal Verification of an Operating-System Kernel

• Verisoft OS
– HillebrandMA, PaulWJ. On the architecture of system verification environments. 2008.

• Verisoft + Microsoft Research – Pike OS, Hyper-V verification
– C. Baumann, B.Beckert, et al. Ingredients of Operating System Correctness. Lessons Learned in the Formal Verification of

PikeOS

• Problems
– Tools limitations and lack of module specifications, no frozen interfaces in Linux

Kernel
• Tools

– Many but no commercial or common used tool

83 / 115

 Deductive Verification of Linux Security Module

 Joint project with NPO RusBITech

 Formal security model MROSL-DP

 Assumptions

 Linux kernel core conforms with its specifications
 It is not target to prove

 Code under verification

 Code is hardware independent

 Verification unfriendly

Astraver Project

84 / 115

MROSL DP

 Operating system access control model

 Hierarchical Role-Based Access Control (RBAC)

 Mandatory Access Control (MAC)

 Mandatory Integrity Control (MIC)

 Implemented as Linux Security Module (LSM)
for Astra Linux

 ~150 pages in mathematical notation

85 / 115

LSM Verification Project

86 / 115

LSM stands for Linux Security Module

?

Security requirements in math
notation (MROSL DP model
integrates of RBAC, MIC and, MAC)

Implementation of LSM in Linux kernel

From Rigorous to Formal Security Model
Requirements

Example: access_write(x, x’, y) vs. Implementation

x, x’  S,

y  E  R  AR,

существует r  R  AR: (x, r, reada)  AA,

[если y  E, то

ie(y)  is(x)

и (либо (execute_container(x, y) = true

и, если y  E_HOLE, то fs(x)  fe(y),

иначе fe(y) = fs(x)),

либо (x, downgrade_admin_role, reada)  AA),

и (y, writer)  PA(r)],

[если y  R  AR, то (y, writer)  APA(r),

ir(y)  is(x), ConstraintAA(AA’) = true,

(для e ]y[либо (x, e, reada)  A, либо (x, e,

writea)  A), (либо fr(y) = fs(x),

либо (x, downgrade_admin_role, reada)  AA)],

[если (y  E и ie(y) = i_high) или

(y  R  AR и ir(y) = i_high),

то (x’, fs(x)_i_entity, writea)  A]

88 / 115

Model in math

notation

(semiformal)

Formal model
LSM specs in

ACSL

Semiformal to Formal
Abstract interfaces to

implementation interfaces

Abstract model verification

LSM Verification Project

89 / 115

LSM stands for Linux Security Module

LSM

implementation

in C

LSM implementation

verification

Verification Tool Chain

MROSL-DP model in math notation

Part of LSM in Astra Linux
Deductive verification LSM in Astra Linux

Deductive verification of MROSL-DP model

Frama-C,
Why3

Rodin (Event-B)

90 / 115

Model in math

notation
Model in Event-B

LSM specs in

ACSL

Rodin toolset
Frama-C

(Why2, Jessie)

Semiformal to Formal
Abstract interfaces to

implementation interfaces

Abstract model verification LSM implementation

verification

LSM Verification Project

91 / 115

LSM stands for Linux Security Module

Deductive Verification in C (*)

Open source Memory model
Already applied for
OS low-level code

verification
Usability

VCC – + + –

Why3 + + – +

Frama-C WP + ∓ – +

VeriFast – + ∓ –

C-to-Isabelle + + + ±

(*) The research on deductive verification tools development was carried out with funding
from the Ministry of Education and Science of Russia(the project unique identifier is
RFMEFI60414X0051)

Frama-C–Jessie–Why3
CIL'

CIL with annotations

С-program with

ACSL annotations

Program in Jessie

Jessie Plug-In

Jessie Engine

 Why2

Generator

Why3

Generator

Why3 VCG

Program in WhyML

Verification conditions

in WhyML
Verification Condition

Transformations

Formula Encoder Theorem Encoder

SMT-LIB, etc. Theorems Coq, PVS, Mizar

Why3

Verification Results

Database

Alt-Ergo Z3 CVC4 Coq PVS

Why3 IDE

...

...

Why2

Why3

Frama-C

93 / 115

Problems with the tools

 Memory model limitations

 Arithmetics with pointers to fields of structures
(container_of)

 Prefix structure casts

 Reinterpret casts

 Integer model problems

 Limited code support

 Functional pointers

 String literals

 Scalability problems

 Usability problems 94 / 115

Model in math

notation
Model in Event-B

LSM specs in

ACSL

Rodin toolset
Frama-C

(Why2, Jessie)

Semiformal to Formal
Abstract interfaces to

implementation interfaces

Abstract model verification LSM implementation

verification

LSM Verification Project

Handmade > 10 pages

Comments > 100 pages
C Source code ~ 5 Kline Event-B ~ 3000

lines
ACSL code > 15 Kline

96 / 115

LSM stands for Linux Security Module

Hierarchical MROSL DP Model
(decomposition of Event-B model)

1. RBAC – Role-based access
control

2. Model 1. with MAC
(Mandatory access control)

3.2. Model 2 for hypervisors 3.1. Model 2 with MAC and
information flow in memory

control

4.1. Model 3.1 with MAC and
information flow in time control

4.2. Model 3.1 for distributed
systems

97 / 115

LSM Verification Conclusion

 InfoSec requirements are essentially non-
functional, they are not decomposed as the
functional requirements and

 the direct correspondence between the formal
security model entities implementation entities of
such a complex system as the operating system
(?) can not be built

 What to do?

98 / 115

Final Discussion

• Libraries + Kernel

• Monolithic Kernel

• Microkernel

Libraries – ~1 million functions, ~ 10
5
 KLOC

Kernel

Core kernel - ~ 5∙10
3
 KLOC

Drivers

Microkernel modules
Microkernel modules

Microkernel modules

Drivers - ~ 5-100 KLOC

5-200 KLOC

OS Scale

100 / 115

OS Scale - Verification Approaches

Libraries + Kernel ~ 106 KLOC

Monolithic Kernel ~ 104 KLOC
(Linux, Windows)

Hypervisors (Hyper-V)< 300 KLOC

Drivers/modules < 100 KLOC

Microkernel < 10 KLOC
(L4, PikeOS)

Deductive Verification

Testing

Software Model Checking

?

101 / 115

Verification Approaches and
Development Processes

Static

analysis

Static

verification

High quality

 test suite

One

test

Deductive

verification

1 kind
bugs

all kinds
of bugs

in all executions in 1 execution

102 / 115

Heavyweight

development

processes

Lightweight

development

processes

What is “Heavyweight processes”?

103 / 115

Verification Approaches and
Development Processes

Static

analysis

Static

verification

High quality

 test suite

One

test

Deductive

verification

1 kind
bugs

all kinds
of bugs

in all executions in 1 execution

104 / 115

Heavyweight

development

processes

Lightweight

development

processes

Verification Approaches and
Development Processes

Static

analysis

Static

verification

High quality

 test suite

One

test

Deductive

verification

1 kind
bugs

all kinds
of bugs

in all executions in 1 execution

105 / 115

Heavyweight

development

processes

Lightweight

development

processes

Conclusion on Practical Verification

106 / 115

Trivial conclusions:

• No silver bullet

• We are seeing remarkable progress in the
use of formal and other sophisticated
software analysis techniques.

Other ones:

• However deep testing and verification
require a deep knowledge of the system
under analysis and it is not clear how such
a situation may change in the near future

• The axiom that testing should be done by
an independent testers group in the case
of very complex systems is not valid.

Frederick P. Brooks Jr.

Conclusion on Practical Verification

107 / 115

• Dines Bjørner : Each development
team must include at least one
mathematicion

• In practice, Intel and Microsoft
have integrated development team
and testers

• seL4 & PikeOS verification
experience shows that such
projects joint designers and
mathematicians-verifiers.

Dines Bjørner

Trivial conclusion:
• Safety & security strongly intersect, one

without the other can not be provided
• Deep verification easier to perform for a

small and simple OS than for large and
complex one.

Other ones:
• Programmers try to ensure safety without

linking the design decisions with security
issues - to some extent it is possible.

• But sometimes we can not follow this way,
for example, we can not pass certification
process.

• A high level of confidence requires
heavyweight processes, in particular, careful
work with the requirements specification -
this is the most difficult moment - pointed
out by Alan Perlis

Conclusion OS Information Security

108 / 115

Trivial conclusion:
• Safety & security strongly intersect, one

without the other can not be provided
• Deep verification easier to perform for a

small and simple OS than for large and
complex one.

Other ones:
• Programmers try to ensure safety without

linking the design decisions with security
issues - to some extent it is possible.

• But sometimes we can not follow this way,
for example, we can not pass certification
process.

• A high level of confidence requires
heavyweight processes, in particular, careful
work with the requirements specification -
this is the most difficult moment - pointed
out by Alan Perlis

Conclusion OS Information Security

109 / 115

This is not surprising since computers
 can compute so much more than we
 yet know how to specify

Conclusion OS Information Security

110 / 115

• We have to establish the problem of
conformance of security model with
protection mechanisms of a trusted
operating system informally (or formally in
part).

• Shura-Bura noted that the transition from
the informal to the formal is essentially
informal.

• This thesis leads to the conclusion that in

addition to the verification tasks we have
establish and solve the validation task.

• Open problem: How to combine and reuse the
techniques, tools, and verification&validation
artifacts?

M.P.Shura-Bura

Acknowledgements:
• TAROT organizers

• Antoine Rollet

• Alexey Khoroshilov, Victor Kuliamin,
Petr Devyanin

• Sponsors and industrial partners

Merci!

Welcome to SYRCoSE-2017 in Kazan(Innopolis)
May 29-31, 2017
http://syrcose.ispras.ru

113

Read More . . .

– http://www.ispras.ru/groups/se/

• Publications
– http://www.ispras.ru/groups/se/publications.php

• Open projects: UniTESK, OLVER, LDV, BLAST, CPAchecker,
MASIW, Requality, Frama-C/Why3/Jessie
– http://unitesk.ru
– http://forge.ispras.ru
– http://hardware.ispras.ru
– http://linuxtesting.org
– http://www.linuxbase.org/navigator/commons/welcome.php
– http://www.ispras.ru/technologies/
– http://sdat.ispras.ru/
– http://syrcose.ispras.ru/
– http://www.isprasopen.ru/en/conf.html 114 / 115

http://ispras.ru/ru/se

Merci!

