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 ISP RAS belongs to the Division 

of Mathematical Sciences of the 

RAS.  

 The Institute employs more than 

200 highly qualified researchers 

and software engineers, including 

12 doctors of science and 45 

philosophy doctors.  

 Many employees of the Institute 

also work as professors in leading 

Moscow universities.  
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 SE Department  staff: 

 over 40 researchers and engineers, including 3 Doctors of Sc. and 13 Ph.D. 

 Major partners and customers 

 Foreign partners: Microsoft Research, Intel Labs, Nokia, Google, ETRI, 

EADS Telecom, University of Passau, Fraunhofer FOKUS 

 Russian partners: NIISI RAS, GosNIIAS, VimpelCom, MCST(Elbrus)   

 International organizations: ISO/JTC 1, ETSI, The Linux Foundation 

 

 
 

Software Engineering Department 
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ISPRAS Research Model = ? 

ISPRAS Research Model = Industrial Research 
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Application Domains 
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 Verification techniques and tools (testing, software model checking, 

deductive verification) 

 Trusted operating systems (Linux family, ARINC-653 Real-Time OS) 

 Tool chains for critical software life cycle support 

 Requirements management tools 

 System modeling (AADL), simulation, risk analysis 

 Cyber-physical system integration (avionics) 

 Telecom and operating systems API/ABI standards 

 Hardware designs testing 

 Model Based Testing foundations 

SE Department R&D Domains 
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1. What is the “Operating System”? 

2. Spectrum of OS testing and verification methods 

3. State of the Art and ISPRAS’s experience 

4. Information security specifics and OS verification 

Agenda 
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OS Verification Challenge 

• Operating System is a base of software platform. Reliability and 
security of OS is ultimate prerequisite of information technologies 
quality 

• Critical software/systems need certification. OS certification is 
necessary part of certification process 

• IT domains requiring reliable, secure, trusted OSs: 

– Servers and work stations 

– Data centers 

– Avionics, other computing intensive systems   

– Mobile devices 

– SCADA, etc. 
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OS Architecture 

• Libraries + Kernel 

 

 

 

 

• Monolithic Kernel 

 

 

 

• Microkernel 

Libraries 

Kernel 

Core kernel 

Drivers 

Microkernel modules 
Microkernel modules 

Microkernel modules 
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OS Architecture. Scale 

• Libraries + Kernel 

 

 

 

 

• Monolithic Kernel 

 

 

 

• Microkernel 

Libraries – ~1 million functions, ~ 10
5
 KLOC 

Kernel 

Core kernel - ~ 5∙10
3
 KLOC 

Drivers 

Microkernel modules 
Microkernel modules 

Microkernel modules 

Drivers - ~ 5-100 KLOC 

5-200 KLOC 
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Operating Systems Structure 

System 
Calls 

Special 
File Systems 

Signals, 
Memory updates, 
Scheduling, 
... 

Kernel-space 
Kernel 

Modules 

Kernel Core (mmu, scheduler, IPC) 

Hardware 

Interrupts, DMA IO Memory/IO Ports 

User-space 

Applications 

System 
Libraries 

Utilities 
System 
Services 

Kernel 
Kernel 

Threads 
Device Drivers 

Operating 
system 

Platform 



Spectrum of Testing/Verification 
Approaches 

• Testing (dynamic analysis, monitoring, run-time 
verification, fault injection) 

• Static analysis (lightweight analysis, software model 
checking) 

• Static/dynamic analysis (DART, concolic testing) 

• Deductive verification 
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Spectrum of Testing/Verification 
Approaches vs. Verification Aspects 

Testing/Verification aspects: 

• Functionality / Conformance / Reliability / Security / . . . 

• Usability testing 

• Performance modeling and testing 

•  . . .  
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• Testing (dynamic analysis, monitoring, run-time verification) 

• Static analysis (lightweight analysis, software model checking) 

• Static/dynamic analysis (DART, concolic testing) 

• Deductive verification 
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Static Analysis Dynamic Analysis 

+ All paths at once – One path only 

+ Hardware, test data and test 
environment is not required 

– Hardware, test data and test 
environment is required 

– There are false positives + Almost no false positives 

– Checks for predefined set of 
bugs only 

+ The only way to show the 
code actually works 
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State of the Art.  
Methods and Tools. Testing 

• 3 views on OS : 
– OS as API for applications 

– OS is an OS kernel 

– OS is a part of software/hardware platform 

• OS as API for applications  
• Problems 

– Huge set of APIs (over 1 million functions) 

– Lack of specifications (poor quality of specifications) 

 

19 / 115    



State of the Art.  

Methods and Tools. Testing 

• 3 views on OS: 
– OS as API for applications 

– OS is an OS kernel 

– OS is a part of software/hardware platform 

• OS as API for applications.  
• Problems 

– Huge set of APIs (over 1 million functions) 

– Lack of specifications (poor quality of specifications) 

• Methods 

– Traditional (handmade) test suites 

– Specification/model based testing 

• Specification based testing tools 

– ADLT (Sun Microsystem, 1993) 

– KVEST (Nortel, ISPRAS, 1994-1999) 

– UniTESK/CTESK (ISPRAS, 2000-2007 

– SpecExplorer (Microsoft, 2004-2009) 
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OLVER – Model Based Testing 
of Linux Basic Libraries(*) 
 
 
 
____________ 
(*) The project was supported by Russian Ministry of 
Education and Science and  by The Linux Foundation 



OLVER: Open Linux VERification 

Linux Standard Base – LSB 3.1 

LSB Core ABI 

GLIBC  

libc libcrypt libdl 

libpam libz libncurses 

libm libpthread librt libutil 

LSB Core 3.1 / ISO 23360  

ABI Utilities ELF, RPM, … 

LSB C++ LSB Desktop 
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OLVER Process 

Test Suite

LSB Requirements

Specifications

Test Scenarios

Tests

CTesK 

Automatic 

Generator

Test Reports

Testing Quality

Goals
Linux

System
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Technology: KVEST (1999)/UniTESK (2002) 
Test Oracles 

Test 

oracle 

Specifications 

(pre- and 

postconditions) 

      

? 
System 

under 

test 
Test stimuli 

System under test is 

a black box that 

provides API 

(functions, 

procedures  etc.) 

• T. J. Ostrand and M. J. Balcer’s “The Category-Partition Method for Specifying and Generating 
Functional Tests” (in CACM, 31(6):676–686, June 1988). 

• I.Burdonov, A.Kossatchev, A.Petrenko, D.Galter. KVEST: Automated Generation of Test Suites 
from Formal Specifications. Proceedings of Formal Method Congress, Toulouse, France, 1999, 
LNCS, No. 1708. 

• I.Bourdonov, A.Kossatchev, V.Kuliamin, and A.Petrenko. UniTesK Test Suite Architecture. Proc. of 
FME 2002. LNCS 2391. 



KVEST/UniTesK Workflow 

Implementation Specification Model of test 

(test scenario) Model of coverage 

Test stimuli generator Output analysis 

Trace analysis  25 / 115    



UniTESK Test Scenario Model 

Test 

Engine 

Test 

Scenario 

So called “Implicit automata” or 

EFSM derived during on-the-fly test scenario 

execution. 

 

Implicit automata is an ADT with  

2 operations: 

- recognise_node_ID () -> ({new, visited}  x ID) 

- next_call (next_input_stimulus) -> (…) 

 

The test engine step by step builds/explores all 

nodes (states) and all available function calls 

(transitions). 
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Requirements Catalogue 
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{ 
    pre 
    { 
        // If copying takes place between objects that overlap, the behavior is undefined. 
        REQ("app.memcpy.02", "Objects are not overlapped", TODO_REQ() ); 
 
        return true; 
    } 
    post 
    { 
        /*The memcpy() function shall copy n bytes from the object 
           pointed to by s2 into the object pointed to by s1. */ 
        REQ("memcpy.01", "s1 contain n bytes from s2", TODO_REQ() ); 
 
        /* The memcpy() function shall return s1; */ 
        REQ("memcpy.03", "memcpy() function shall return s1", TODO_REQ() ); 
 
        return true; 
    } 
} 

memcpy() specification template 
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specification 
VoidTPtr memcpy_spec( CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n ) 
{ 
    pre 
    { 
        /* [Consistency of test suite] */ 
        REQ("", "Memory pointed to by s1 is available in the context", 
            isValidPointer(context,s1) ); 
        REQ("", "Memory pointed to by s2 is available in the context", 
            isValidPointer(context,s2) ); 
 
        /* [Implicit precondition] */ 
        REQ("", "Memory pointed to by s1 is enough", sizeWMemoryAvailable(s1) >= n 
); 
        REQ("", "Memory pointed to by s2 is enough", sizeRMemoryAvailable(s2) >= n ); 
 
        // If copying takes place between objects that overlap, the behavior is undefined. 
        REQ("app.memcpy.02", "Objects are not overlapped", 
            !areObjectsOverlapped(s1,n,s2,n) ); 
 
        return true; 
    } 

memcpy() precondition 
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specification 
VoidTPtr memcpy_spec( CallContext context, VoidTPtr s1, VoidTPtr s2, SizeT n ) { 
    post 

    { 
        /*The memcpy() function shall copy n bytes from the object 
           pointed to by s2 into the object pointed to by s1. */ 
        REQ("memcpy.01", "s1 contain n bytes from s2", 
              equals(   readCByteArray_VoidTPtr(s1,n), @readCByteArray_VoidTPtr(s2,n) ) 

           ); 
        
    /* [The object pointed to by s2 shall not be changed] */ 
        REQ("", "s2 shall not be changed", 
              equals(   readCByteArray_VoidTPtr(s2,n), @readCByteArray_VoidTPtr(s2,n) )); 

 
        /* The memcpy() function shall return s1; */ 
        REQ("memcpy.03", "memcpy() function shall return 
s1",equals_VoidTPtr(memcpy_spec,s1) ); 
 

        /* [Other memory shall not be changed] */ 
        REQ("", "Other memory shall not be changed", 
              equals(   readCByteArray_MemoryBlockExceptFor( getTopMemoryBlock(s1), s1, n ), 
                        @readCByteArray_MemoryBlockExceptFor( getTopMemoryBlock(s1), s1, n )  ) ); 
        return true; 

    } 

memcpy() postcondition 



Requirements Traceability 

Failure report: requirement {mvcur.04} failed 
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Requirements Coverage Report 
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Requirements Coverage Report (2) 
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OLVER Results 

 Requirements catalogue built for LSB and POSIX 

 1532 interfaces 

 22663 elementary requirements 

 97 deficiencies in specification reported 

 Formal specifications and tests developed for 

 1270 interface (good quality) 

 + 260 interfaces (basic quality) 

 80+ bugs reported in modern distributions 

 OLVER is a part of the official LSB Certification test suite 
http://ispras.linuxfoundation.org 
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OLVER Conclusion 

 model based testing allows to achieve better 
quality using less resources  
 

 maintenance of MBT is cheaper 
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OLVER Conclusion 

 model based testing allows to achieve better 
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if you have smart test engineers 

 maintenance of MBT is cheaper 
if you have smart test engineers 
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OLVER Conclusion 

 model based testing allows to achieve better 
quality using less resources  
if you have smart test engineers 

 maintenance of MBT is cheaper 
if you have smart test engineers 

 traditional tests are more useful for typical test 
engineers and developers 
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OLVER Conclusion 

 model based testing allows to achieve better 
quality using less resources  
if you have smart test engineers 

 maintenance of MBT is cheaper 
if you have smart test engineers 

 traditional tests are more useful for typical test 
engineers and developers 

 so, long term efficiency is questionable 

 but... 
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Configuration Testing 
Product Line Testing 



State of the Art.  
Methods and Tools. Testing 

• 3 views on OS: 
– OS as API for applications 

– OS is an OS kernel 

– OS is a part of software/hardware platform 

• OS is a part of software/hardware platform 
• Problems 

– Huge number of configurations 

– Unavailable hardware devices and lack of devices models 

• Methods 

– Ad-hoc  ≡ proprietary know-how 

– Systematical reduction of target configurations 

      V.V. Kuliamin. Combinatorial generation of software-based OS configurations. The Proceedings of  

ISP RAS], 2012.  

• Tools 

– No commercial or popular tool 

• Testing quality 

– Not available 
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Linux Product Line Verification  

• University of Waterloo 

– Y. Xiong, A. Hubaux, S. She, and K. Czarnecki, 
“Generating range fixes for software 
configuration,” in Proc. of ICSE, 2012. 

• University of Passau 

– Sven Apel, Alexander von Rhein, Philipp Wendler, 
Armin Größlinger, and Dirk Beyer. Strategies for 
Product-Line Verification: Case Studies and 
Experiments. In Proc. of ICSE, 2013. 
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OS Kernel 
Testing/Verification 



State of the Art.  
Methods and Tools. Testing 
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• 3 views on OS: 
– OS as API for applications 

– OS is an OS kernel 

– OS is a part of software/hardware platform 

• OS is a kernel  
• Problems 

– Event driven multithreading systems 

– Lack of specifications (poor quality of specifications, Microsoft Windows is an exclusion) 

• Methods 

– Run-time verification 

– Fault simulation 
Linux Kernel Testing (KEDR):   http://code.google.com/p/kedr 

• Tools 

– No commercial or popular tool applicable in kernel mode 

• Testing quality 

– Average test coverage lower 20% 



Run-Time Verification 



Sanitizer Tools Family. 
Google research group of Konstantin Serebryany(*) 
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Run-time verification and compile-time code instrumentation.  

Tools:  

• MemorySanitizer: fast detector of uninitialized memory 
use in C++ 

• AddressSanitizer: A Fast Address Sanity Checker 

• Dynamic Race Detection with LLVM Compiler 

• ThreadSanitizer – data race detection 

• KernelThreadSanitizer – data races in Linux Kernel 

 
(*) http://research.google.com/pubs/KonstantinSerebryany.html 



Robustness Testing 



Fault Handling Code 

 Is not so fun 

 Is really hard to keep all details in mind 

 Practically is not tested 

 Is hard to test even if you want to 

 Bugs seldom(never) occurs 

=> low pressure to care 
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Why do we care? 

 It beats someone time to time 

 Safety critical systems 

 Certification authorities 
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Operating Systems Structure 

System 
Calls 

Special 
File Systems 

Signals, 
Memory updates, 
Scheduling, 
... 

Kernel-space 
Kernel 

Modules 

Kernel Core (mmu, scheduler, IPC) 

Hardware 

Interrupts, DMA IO Memory/IO Ports 

User-space 

Applications 

System 
Libraries 

Utilities 
System 
Services 

Kernel 
Kernel 

Threads 
Device Drivers 

Operating 
system 
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Run-Time Testing of Fault Handling 

 Manually targeted test cases 

+ The highest quality 

– Expensive to develop and to maintain 

– Not scalable 

 Random fault injection on top of existing tests 

+ Cheap 

– Oracle problem 

– No any guarantee 

– When to finish? 
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Systematic Approach 

 Hypothesis: 

 Existing tests lead to more-or-less 
deterministic control flow in kernel code 

 Idea: 

 Execute existing tests and collect all potential 
fault points in kernel code 

 Systematically enumerate the points and 
inject faults there 

51 / 115    



Fault Injection Implementation 

 Based on KEDR framework*  

 intercept requests for memory allocation/bio 
requests 

 to collect information about potential fault 
points 

 to inject faults 

 also used to detect memory/resources leaks 

(*) http://linuxtesting.org/project/kedr 52 / 115    



KEDR Workflow 

http://linuxtesting.org/project/kedr 
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Systematic           vs.         Random 

• + 2 times more 
cost effective 

• + Repeatable results 

• – Requires more 
complex engine 

• + Cover double 
faults 

• – Unpredictable 

• – Nondeterministic 
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Concolic Testing 



Concolic Testing  

 Concolic = Symbolic + Concrete 

 SUT runs in concrete and in symbolic modes 

 Symbolic execution is used to collect 
conditions and branches of the current path 

 Collected data is used to generate new input 
data to cover more execution paths 
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Concolic Tools 
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S2E for Kernel Testing  

 based on KLEE 

 uses patched Qemu 

 source code is not 
required 

 supports plugins 

(*) https://s2e.epfl.ch/ 
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T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider

Monitoring Aspects - - + +- + +-

Kinds of Observable Events

interface events + + +

internal events + + + +

Events Collection

internal + + + + +

external +

embedded

Requirements Specification Specific Plugin Specific Specific

in-place (local, tabular) + + If Dis Dis

formal model (pre/post+invariants,...) + If Co Co

assertions/prohibited events External External External Co Co Co

Events Analysis

online + + +

in-place + + + +

outside +

offline +

Testing Aspects 

60 / 115    



T2C OLVER Autotest Cfg FI KEDR-LC S2E RH KStrider

Active Aspects +- + - + + -

Target Test Situations Set cfgs Specific

requirements coverage + +

class equivalence coverage +

model coverage (SUT/reqs) +

source code coverage almost +

Test Situations Setup/Set Gen

passive +-

fixed scenario + +

manual +

pre-generated

coverage driven +-

random +-

adapting scenario +

coverage driven +

source code coverage almost +

model/... coverage +

random as option

Test Actions

application interface + + +

HW interface

internal actions + + +

inside + +

outside +



Software Model Checking 



State of the Art. Methods and Tools. 

Software Model Checking 

• Approaches: 
– Counterexample guided abstraction refinement (CEGAR) - Edmund Clarke et al. 

– Configurable Program Analysis – Dirk Beyer 

– Abstract interpretation - Patrick Cousot and Radhia Cousot  

– Bounded Model Checking – BMC – Edmund Clarke et al. 

• Gold practices 
• Microsoft Research (SLAM) 

• LDV – Linux Driver Verification 

• Problems 
– Lack of specs 

– Limitations on size and complexity of modules (no more 30-100KLine) 

• Tools 
– Many but no commercial or popular tool 

• Verification quality 
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SVCOMP‘2012 Results 
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SVCOMP‘2014 Results 



SVCOMP‘2015 Results 
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LDV: Linux Driver Verification 



Commit Analysis(*) 

 All patches in stable trees (2.6.35 – 3.0)  
for 1 year: 

 26 Oct 2010 – 26 Oct 2011 

 3101 patches overall 

(*) Khoroshilov A.V., Mutilin V.S., Novikov E.M. Analysis of typical faults in Linux operating system drivers.  
Proceedings of the Institute for System Programming of RAS, volume 22, 
 2012, pp. 349-374. (In Russian) 
http://ispras.ru/ru/proceedings/docs/2012/22/isp_22_2012_349.pdf 
Raw data: http://linuxtesting.org/downloads/ldv-commits-analysis-2012.zip 68 / 115    

http://ispras.ru/ru/proceedings/docs/2012/22/isp_22_2012_349.pdf
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Commit Analysis 

 All patches in stable trees (2.6.35 – 3.0) for 1 
year: 

 26 Oct 2010 – 26 Oct 2011 

 3101 patches overall 

Unique commits to drivers  
(1503 ~ 50%) 

Support of a 
new functionality 

(321 ~ 20%) 

Bug fixes 
(1182 ~ 80%) 



Commit Analysis 

Typical bug fixes 
(349 ~ 30%) 

Generic bug fixes 
(102 ~ 30%) 

Fixes of Linux kernel API misuse 
(176 ~ 50%) 

Fixes of data races, 
deadlocks 
(71 ~ 20%) 

 All patches in stable trees (2.6.35 – 3.0)  
for 1 year: 

 26 Oct 2010 – 26 Oct 2011 

 3101 patches overall 



        Taxonomy of Typical Bugs Rule classes Types 
Number of 
bug fixes 

Percents 
Cumulative 

total 
percents 

Correct usage of 
the Linux kernel 

API 
(176 ~ 50%) 

Alloc/free resources 32 ~18% ~18% 

Check parameters 25 ~14% ~32% 

Work in atomic context 19 ~11% ~43% 

Uninitialized resources 17 ~10% ~53% 

Synchronization 
primitives in one thread 

12 ~7% ~60% 

Style 10 ~6% ~65% 

Network subsystem 10 ~6% ~71% 

USB subsystem 9 ~5% ~76% 

Check return values 7 ~4% ~80% 

DMA subsystem 4 ~2% ~82% 

Core driver model 4 ~2% ~85% 

Miscellaneous 27 ~15% 100% 

Generic 
(102 ~ 30%) 

NULL pointer 
dereferences 

31 ~30% ~30% 

Alloc/free memory 24 ~24% ~54% 

Syntax 14 ~14% ~68% 

Integer overflows 8 ~8% ~76% 

Buffer overflows 8 ~8% ~83% 

Uninitialized memory 6 ~6% ~89% 

Miscellaneous 11 ~11% 100% 

Synchronization 
(71 ~ 20%) 

Races 60 ~85% ~85% 

Deadlocks 11 ~15% 100% 



Software Model Checking 

entry 
point 

error location 

 Reachability problem 
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Verification Tools World 

• int main(int argc,char* argv[]) 

• { 

•  ... 

•  other_func(var); 

•  ... 

• } 

void other_func(int v) 

{ 

  ... 

  assert( x != NULL); 

} 
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Device Driver World 
int usbpn_open(struct net_device *dev) { ... }; 

int usbpn_close(struct net_device *dev) { ... }; 

struct net_device_ops usbpn_ops = { 

 .ndo_open = usbpn_open, .ndo_stop = usbpn_close 

}; 

int usbpn_probe(struct usb_interface *intf, const struct usb_device_id *id){ 

 dev->netdev_ops = &usbpn_ops; 

 err = register_netdev(dev); 

} 

void usbpn_disconnect(struct usb_interface *intf){...} 

 

struct usb_driver usbpn_struct = { 

 .probe = usbpn_probe, .disconnect = usbpn_disconnect, 

}; 

int __init usbpn_init(void){ return usb_register(&usbpn_struct);} 

void __exit usbpn_exit(void){usb_deregister(&usbpn_struct );} 

 

module_init(usbpn_init); 

module_exit(usbpn_exit); 

 

Callback interface 
procedures registration 

No explicit calls to  
init/exit procedures 



Driver Environment Model 

• int main(int argc,char* argv[]) 

• { 

•   usbpn_init() 

•   for(;;) { 

•     switch(*) { 

•      case 0: usbpn_probe(*,*,*);break; 

•      case 1: usbpn_open(*,*);break; 

•      ... 

•     } 

•   }  

•   usbpn_exit(); 

• }  75 / 115    



Driver Environment Model (2) 

 Order limitation 

 open() after probe(), but before 
remove() 

 Implicit limitations 

 read() only if open() succeed 

 and it is specific for each class of drivers 
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Model Checking and Linux Kernel 

entry 
point 

error location 

 Reachability problem                   
DONE 
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Instrumentation 

 

• int f(int y) 

• { 

• struct urb *x; 

 

•   x = 

usb_alloc_urb(0,GFP_KERNE

L); 

 

•   ... 

 

•   usb_free_urb(x); 

 

•   return y; 

• } 

set URBS = empty; 
 
int f(int y) 
{ 
struct urb *x; 
 
  x = usb_alloc_urb(); 
  add(URBS, urb); 
  ... 
  assert(contains(URBS, x)); 
  usb_free_urb(x); 
  remove(URBS, urb); 
 
  return y; 
} 
  …  
  // after module exit 
  assert(is_empty(URBS)); 



Model Checking and Linux Kernel 

entry 
point 

error location 

 Reachability problem 
                  
DONE 

                  
DONE 



Error Trace Visualizer 



Bugs Found (230 patches already applied ) 



Deductive Verification 



State of the Art. Methods and Tools. 
Deductive Verification 
• Approaches: 

– Design and verify an ideal “perfect” OS 
– Verify a critical component of real-life OS 

• Gold practices 
• L4 Kernel Verification 

– Gerwin Klein. Operating System Verification — An Overview. 2009 

• seL4 
– Gerwin Klein, June Andronick, Kevin Elphinstone, Gernot Heiser, David Cock, Philip Derrin, Dhammika Elkaduwe, Kai 

Engelhardt. seL4: Formal Verification of an Operating-System Kernel 

• Verisoft OS 
– HillebrandMA, PaulWJ. On the architecture of system verification environments. 2008. 

• Verisoft + Microsoft Research – Pike OS, Hyper-V verification 
– C. Baumann, B.Beckert, et al. Ingredients of Operating System Correctness. Lessons Learned in the Formal Verification of 

PikeOS 

• Problems 
– Tools limitations and lack of module specifications, no frozen interfaces in Linux 

Kernel  
• Tools 

– Many but no commercial or common used tool 
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 Deductive Verification of Linux Security Module 

 Joint project with NPO RusBITech 

 Formal security model MROSL-DP 

 Assumptions 

 Linux kernel core conforms with its specifications 
 It is not target to prove 

 Code under verification 

 Code is hardware independent 

 Verification unfriendly 

 

Astraver Project 
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MROSL DP 

 Operating system access control model 

 Hierarchical Role-Based Access Control (RBAC) 

 Mandatory Access Control (MAC) 

 Mandatory Integrity Control (MIC) 

 Implemented as Linux Security Module (LSM) 
for Astra Linux 

 ~150 pages in mathematical notation 
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LSM Verification Project  
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LSM stands for Linux Security Module 

? 
 

Security requirements in math 
notation (MROSL DP model 
integrates of RBAC, MIC and, MAC) 

Implementation of LSM in Linux kernel 



From Rigorous to Formal Security Model 
Requirements 



Example: access_write(x, x’, y) vs. Implementation 

x, x’  S,  

y  E  R  AR,  

 

существует r  R  AR: (x, r, reada)  AA, 

 

[если y  E, то  

 

ie(y)  is(x)  

 

и (либо (execute_container(x, y) = true  

 

и, если y  E_HOLE, то fs(x)  fe(y),  

иначе fe(y) = fs(x)),  

либо (x, downgrade_admin_role, reada)  AA), 

 

и (y, writer)   PA(r)],  

[если y  R  AR, то (y, writer)   APA(r),  

ir(y)  is(x), ConstraintAA(AA’) = true,  

(для e  ]y[ либо (x, e, reada)  A, либо (x, e, 

writea)  A), (либо fr(y) = fs(x),  

либо (x, downgrade_admin_role, reada)  AA)], 

[если (y  E и ie(y) = i_high) или  

(y  R  AR и ir(y) = i_high),  

то (x’, fs(x)_i_entity, writea)  A] 
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Model in math 

notation 

(semiformal) 

Formal model 
LSM  specs in 

ACSL 

Semiformal to Formal 
Abstract interfaces to 

implementation interfaces 

Abstract model verification 

LSM Verification Project 
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LSM stands for Linux Security Module 

LSM  

implementation 

in C 

LSM implementation 

verification 



Verification Tool Chain 

MROSL-DP model in math notation 

Part of LSM in Astra Linux  
Deductive verification LSM in Astra Linux 

Deductive verification of MROSL-DP model 

Frama-C, 
Why3 

Rodin (Event-B) 
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Model in math 

notation 
Model in Event-B 

LSM  specs in 

ACSL 

Rodin toolset 
Frama-C 

(Why2, Jessie) 

Semiformal to Formal 
Abstract interfaces to 

implementation interfaces 

Abstract model verification LSM implementation 

verification 

LSM Verification Project 
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LSM stands for Linux Security Module 



Deductive Verification in C (*) 

Open source Memory model 
Already applied for 
OS low-level code 

verification 
Usability 

VCC – + + – 

Why3 + + – + 

Frama-C WP + ∓ – + 

VeriFast – + ∓ – 

C-to-Isabelle + + + ± 

(*) The research on deductive verification tools development was carried out with funding 
from the Ministry of Education and Science of Russia(the project unique identifier is 
RFMEFI60414X0051) 



Frama-C–Jessie–Why3 
CIL' 

CIL with annotations 

С-program with 

ACSL annotations 

Program in Jessie 

Jessie Plug-In 

Jessie Engine 

 Why2 

Generator 

Why3 

Generator 

Why3 VCG 

Program in WhyML 

Verification conditions 

in WhyML 
Verification Condition 

Transformations 

Formula Encoder Theorem Encoder 

SMT-LIB, etc. Theorems Coq, PVS, Mizar 

Why3 

Verification Results 

Database 

Alt-Ergo Z3 CVC4 Coq PVS 

Why3 IDE 

... 

... 

Why2 

Why3 

Frama-C 
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Problems with the tools 

 Memory model limitations 

 Arithmetics with pointers to fields of structures 
(container_of) 

 Prefix structure casts 

 Reinterpret casts 

 Integer model problems 

 Limited code support 

 Functional pointers 

 String literals 

 Scalability problems 

 Usability problems 94 / 115    





Model in math 

notation 
Model in Event-B 

LSM  specs in 

ACSL 

Rodin toolset 
Frama-C 

(Why2, Jessie) 

Semiformal to Formal 
Abstract interfaces to 

implementation interfaces 

Abstract model verification LSM implementation 

verification 

LSM Verification Project 

Handmade  > 10 pages 

Comments > 100 pages 
C Source code  ~ 5 Kline Event-B ~ 3000  

lines 
ACSL code  > 15 Kline 
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LSM stands for Linux Security Module 



Hierarchical MROSL DP Model 
(decomposition of Event-B model) 

1. RBAC – Role-based access 
control 

2. Model 1. with MAC  
(Mandatory access control) 

3.2. Model 2 for hypervisors 3.1. Model 2 with MAC and 
information flow in memory 

control 

4.1. Model 3.1 with MAC and 
information flow in time control 

4.2. Model 3.1 for distributed 
systems 
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LSM Verification Conclusion 

 InfoSec requirements are essentially non-
functional, they are not decomposed as the 
functional requirements and  

 the direct correspondence between the formal 
security model entities implementation entities of 
such a complex system as the operating system  
(?) can not be built 

 What to do? 
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Final Discussion 



• Libraries + Kernel 

 

 

 

• Monolithic Kernel 

 

 

 

• Microkernel 

Libraries – ~1 million functions, ~ 10
5
 KLOC 

Kernel 

Core kernel - ~ 5∙10
3
 KLOC 

Drivers 

Microkernel modules 
Microkernel modules 

Microkernel modules 

Drivers - ~ 5-100 KLOC 

5-200 KLOC 

OS Scale 
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OS Scale   -  Verification Approaches 

Libraries + Kernel ~ 106 KLOC 

 

 

 

Monolithic Kernel   ~ 104 KLOC 
(Linux, Windows) 

 

Hypervisors (Hyper-V)< 300 KLOC  

Drivers/modules < 100 KLOC 

 

Microkernel  < 10 KLOC 
(L4, PikeOS) 

 

Deductive Verification 

Testing 

Software Model Checking 

? 
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Verification Approaches and 
Development Processes  

Static 

 
analysis 

Static 

 
verification 

High quality 

 
 test suite 

One 

 
test 

Deductive 

 
verification 

1 kind 
bugs 

all kinds 
of bugs 

in all executions in 1 execution 
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Heavyweight  

development 

processes 

Lightweight 

development 

processes 



What is “Heavyweight processes”? 
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Heavyweight  

development 

processes 

Lightweight 

development 

processes 



Conclusion on Practical Verification 
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Trivial conclusions:  

• No silver bullet 

• We are seeing remarkable progress in the 
use of formal and other sophisticated 
software analysis techniques. 

Other ones: 

• However deep testing and verification 
require a deep knowledge of the system 
under analysis and it is not clear how such 
a situation may change in the near future 

• The axiom that testing should be done by  
an independent testers group in the case 
of very complex systems is not valid. 

Frederick P. Brooks Jr. 



Conclusion on Practical Verification 
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• Dines Bjørner : Each development 
team must include at least one 
mathematicion 

• In practice, Intel and Microsoft 
have integrated development team 
and testers 

• seL4 & PikeOS verification 
experience shows that such 
projects joint designers and 
mathematicians-verifiers. 

Dines Bjørner 



Trivial conclusion: 
• Safety & security strongly intersect, one 

without the other can not be provided 
• Deep verification easier to perform for a 

small and simple OS than for large and 
complex one. 

Other ones: 
• Programmers try to ensure safety without 

linking the design decisions with security 
issues - to some extent it is possible. 

• But sometimes we can not follow this way, 
for example, we can not pass certification 
process. 

•  A high level of confidence requires 
heavyweight processes, in particular, careful 
work with the requirements specification - 
this is the most difficult moment - pointed 
out by Alan Perlis 

 

Conclusion OS Information Security 
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Conclusion OS Information Security 
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This is not surprising since computers 
 can compute so much more than we 
 yet know how to specify 



Conclusion OS Information Security 
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• We have to establish the problem of 
conformance of security model with 
protection mechanisms of a trusted 
operating system informally (or formally in 
part). 

• Shura-Bura noted that the transition from 
the informal to the formal is essentially 
informal. 

 
• This thesis leads to the conclusion that in 

addition to the verification tasks we have 
establish and solve the validation task. 

• Open problem: How to combine and reuse the 
techniques, tools, and verification&validation 
artifacts? 

M.P.Shura-Bura 
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